Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

A Silk Coat for Diamonds Makes Sleek New Imaging and Drug Delivery Tool

Published: Tuesday, January 28, 2014
Last Updated: Tuesday, January 28, 2014
Bookmark and Share
New kind of tiny glowing particle could provide a novel technique for biological imaging and drug delivery.

The new particles, just tens of nanometers across, are made of diamond and covered in silk. They can be injected into living cells, and because they glow when illuminated with certain kinds of light, biologists can use them to peer inside cells and untangle the molecular circuitry that governs cellular behavior, or to study how cells react to a new drug. The silk-coated diamond particles could also potentially be used someday in the clinic, by allowing doctors to send infection-fighting antibiotics to a targeted area of the body.

A team of researchers from Australia and the United States describes this new hybrid diamond-silk material in a paper published today in The Optical Society’s (OSA) journal Biomedical Optics Express.

Nanodiamonds similar to those in this study have been explored previously for their potential medical uses, but this is the first time silk has been incorporated with nanodiamonds, said Asma Khalid of the University of Melbourne, who is the first author of the Biomedical Optics Express paper. "This nanodiamond-silk hybrid material is important due to the potential it offers to the fields of bioimaging, biosensing and drug delivery," she explained.

Diamonds are crystals of carbon. But they can be made with defects—other atoms inserted in the crystal structure—and these defects allow them to do tricks that flawless diamonds can’t, such as absorbing and reemitting light of certain wavelengths, a process called fluorescence. Because these fluorescent nanodiamonds are bright, stable, and harmless to living tissue – and can work at room temperature – researchers have been exploring their use in biological imaging and sensing. But the edges around the particles tend to be rough and may cause  the nanodiamonds to become trapped inside cell membranes.

Previously, other researchers have addressed this problem by coating the particles with lipids, a class of molecules found in fats and waxes. According to the new study, however, a better solution is to cover the nanodiamonds in silk, which is transparent, flexible, compatible with biological tissue, and biodegradable, so it won't leave any harmful byproducts inside the body.

When the researchers tested their new hybrid material, they found that the silk remains transparent, meaning that it does not block the glow of the nanodiamonds. They also discovered that the silk not only preserves the optical properties of the nanodiamonds, but it enhances their brightness by two to four times. Finally, the new material appears to be safe for use in the body: it left no damaging effects even after spending two weeks implanted inside living tissue, suggesting that it is nontoxic and non-inflammatory, the researchers say.

In the future, the team envisions a range of nanodiamond-silk structures that could help researchers improve techniques for fighting infections in targeted areas of the body. A thin film of the new substance, carrying drugs, could be implanted directly into an infected area, minimizing the patient’s exposure to the drugs. Silk can also be designed to degrade at a certain rate, which would allow clinicians to control the release of medications.

In addition to the University of Melbourne, the researchers are affiliated with the University of Sydney and the Silk Lab at Tufts University in Massachusetts.

Paper: “Synthesis and Characterization of Biocompatible Nanodiamond-Silk Hybrid Material,” Khalid, A. et al., Biomedical Optics Express, Vol. 5, Issue 2, pp. 596-608 (2014).

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Self-Propelled Powder to Stop Bleeding
UBC researchers have created the first self-propelled particles capable of delivering coagulants against the flow of blood to treat severe bleeding, a potentially huge advancement in trauma care.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Controlling Body Temperature in Response to 'Fight or Flight'
New research in The FASEB Journal suggests that blocking TRPV1 protein causes an increased release of noradrenaline, leading to an increase in core body temperatures.
Inroads Against Leukaemia
Potential for halting disease in molecule isolated from sea sponges.
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
A Fundamental Protection Mechanism Against Formalin In Mammals is Revealed
Formaldehyde, or formalin, is well known to all of us as a common chemical used in many industrial processes and also as a preservative, remarkably we also produce formaldehyde in our bodies.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos