We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Promethera Bio, EMD Millipore to Develop a Liver Pharmaco-Toxicological Assay

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

This new product is designed to perform more robust studies in pre-clinical toxicity and drug metabolism. Early availability of reliable human liver-based assays is critical to the pharmaceutical industry when deciding to bring a lead compound in clinical phase development. 

With their combined expertise and synergies, the companies are well positioned to develop a ready-to-use long-term liver-based assay. The Promethera Biosciences team is specialized in isolating, expanding and characterizing human liver progenitor cells for both cell therapy and liver cell based assays. EMD Millipore is a global life science company with an extensive portfolio of cell analysis instruments, research reagents and assays, cell culture and sample preparation products, plus advanced microfluidic cell culture as well as drug discovery services. 

Promethera Biosciences has identified a novel adult human hepatic progenitor cell population that can be maintained in vitro in two-dimensional and three-dimensional cell culture conditions providing new models for testing in vitro drug metabolism: Promethera H2Screen and H3screen. This technology is the object of a patent application filed by Promethera Biosciences. There are various benefits with this new technology; Promethera Biosciences cell-based models are derived from healthy human livers and acquire a metabolic capacity within the range of primary hepatocytes. They have long-term stability in culture as well as potential for large-scale production and reproducibility across batches. 

EMD Millipore’s ‘Pearl’ microfluidic technology maintains hepatocyte functionality by mimicking the liver microenvironment. When liver cells are cultured in the ‘Pearl’ format they recover key metabolic functions and could display phenotypic profiles of the intact organ for over a month. 

The project for developing a new product combining the strengths of EMD Millipore 'Pearl' microfluidic technology and of Promethera Biosciences H2Screen/H3Screen cells has been selected by the Belgian Walloon Region Biocluster (BioWin) and the Massachusetts Life Sciences Center (MLSC). It will be funded 900K€ in total for both partners. 

The Belgian Walloon region and the Massachusetts Life Sciences Center (MLSC) are partners in the International Collaborative Industry Program (ICIP). The program’s objective is to promote and motivate collaboration between life sciences companies in Massachusetts (USA) and other countries by facilitating partnerships, supporting exciting new projects, and providing joint funding for helping to swiftly design and develop innovative products and services. 

In April 2013 a call was launched with four partner foreign regions of the Massachusetts Life Sciences Center in the ICIP program. Promethera Biosciences and EMD Millipore were one of the four collaborative projects selected by independent Belgian and American panels of experts. 

”We are very pleased to initiate this collaboration with EMD Millipore and to combine our expertise to develop a ready to use liver based assay. We sincerely thank the Walloon region and the MLSC for funding this innovative project”, said Eric Halioua, Chief Executive Officer of Promethera Biosciences. 

“The opportunity to work closely with Promethera over the course of the project, speaks to the nature of our organization: enabling our partners to conduct potentially life-saving research,” says Robert Yates, President and CEO of EMD Millipore. “We are looking forward to building our relationship and more importantly to the outcomes this partnership has the potential to deliver. A sincere thanks to the MLSC for the opportunity to see what this collaboration can achieve and more importantly the continued support of the Massachusetts Life Sciences industry.” 

An urgent need for reliable human liver-based assays for early preclinical testing 
Early availability of reliable human liver-based assays is critical to the pharmaceutical industry in deciding to bring a lead compound in clinical phase development. 30% of drug candidates fail during clinical development due to toxicity issues. Hepatocyte (liver cells) based studies represent 85% of in vitro toxicology assays. But current models are limited by key technological challenges such as long-term stability of hepatic functionality to allow chronic toxicity testing, and obtaining a stable and consistent human cell source at acceptable cost.