Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

£1.5M Invested to Improve Animal Research

Published: Tuesday, April 29, 2014
Last Updated: Tuesday, April 29, 2014
Bookmark and Share
The funding has been awarded to develop advanced imaging technologies, to maximise their potential to reduce animal use in a diverse range of preclinical research applications.

The funding will support five research projects to increase the utility of a broad spectrum of imaging techniques, including bioluminescence, radio labelling and implantable technology. The projects aim to extend the use of imaging technologies in applications not currently possible with a view to improving animal research, for example by using non-invasive imaging, which minimises suffering, or longitudinal imaging throughout the study, which reduces the number of animals required.

The strategic funding from the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), in collaboration with the Engineering and Physical Sciences Research Council (EPSRC), follows the identification of eight key technology challenges by leading researchers in the imaging field, which once overcome will enable preclinical imaging to both meet the needs of the bioscience sector and impact on the 3Rs.

Included in the funding is a project at the University of Nottingham that will utilise near-infrared quantum dots, a type of fluorescent marker, to improve sensitivity and resolution when imaging cancer cells in mice. The technology would overcome the current difficulties associated with imaging at a deep-tissue level, and enable repeat imaging of the same animal over time.

This non-invasive technique would also improve experimental relevance by allowing patient-derived xenografts to be implanted at the original tumour site, rather than below the skin – a practice which facilitates easy imaging but which is not representative of most human cancers, and so less effective at predicting whether a potential drug will fail in the clinic. Researchers estimate that the refined pre-clinical cancer models made possible by this new imaging technique could reduce animal use in cancer studies by approximately 170,000 per year.

Commenting on the awards, Dr Vicky Robinson, Chief Executive of the NC3Rs, said:

“The potential for technological development to replace, reduce and refine the use of animals in science is now well recognised across the research community. Preclinical imaging offers an opportunity for researchers to greatly reduce and refine animal use through longitudinal studies and identifying earlier endpoints to reduce suffering. However its application is often restricted by limitations with the current technologies available. This strategic funding allows the NC3Rs to target key areas identified by the research community where the development and application of new imaging techniques could have a profound impact on animal use and science.”

Professor Philip Nelson, Chief Executive of the EPSRC, which co-funded £500k of the funding call, said:

“We are delighted to support the NC3Rs. This research builds on our previous collaboration in mathematical modelling in toxicology as well as drawing on and advancing the UK’s first class capability in imaging technologies.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Rising to the Latest Technology Challenges in Animal Research
£1.56 million for proof-of-concepts awarded through the NC3Rs’ CRACK IT Challenges competition.
Thursday, January 30, 2014
£4.8m Funding Awarded for Smart Approaches to Reduce Animal use in Science
NC3Rs grants will develop new testing methods, infrastructure and technologies.
Wednesday, July 31, 2013
£993,000 Challenge Funding Awarded to Develop Animal Research Alternatives and Refinements
CRACK IT seeks proof-of-concepts to replace, reduce and refine animal use across efficacy and safety testing.
Wednesday, February 13, 2013
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!