Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

£1.5M Invested to Improve Animal Research

Published: Tuesday, April 29, 2014
Last Updated: Tuesday, April 29, 2014
Bookmark and Share
The funding has been awarded to develop advanced imaging technologies, to maximise their potential to reduce animal use in a diverse range of preclinical research applications.

The funding will support five research projects to increase the utility of a broad spectrum of imaging techniques, including bioluminescence, radio labelling and implantable technology. The projects aim to extend the use of imaging technologies in applications not currently possible with a view to improving animal research, for example by using non-invasive imaging, which minimises suffering, or longitudinal imaging throughout the study, which reduces the number of animals required.

The strategic funding from the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), in collaboration with the Engineering and Physical Sciences Research Council (EPSRC), follows the identification of eight key technology challenges by leading researchers in the imaging field, which once overcome will enable preclinical imaging to both meet the needs of the bioscience sector and impact on the 3Rs.

Included in the funding is a project at the University of Nottingham that will utilise near-infrared quantum dots, a type of fluorescent marker, to improve sensitivity and resolution when imaging cancer cells in mice. The technology would overcome the current difficulties associated with imaging at a deep-tissue level, and enable repeat imaging of the same animal over time.

This non-invasive technique would also improve experimental relevance by allowing patient-derived xenografts to be implanted at the original tumour site, rather than below the skin – a practice which facilitates easy imaging but which is not representative of most human cancers, and so less effective at predicting whether a potential drug will fail in the clinic. Researchers estimate that the refined pre-clinical cancer models made possible by this new imaging technique could reduce animal use in cancer studies by approximately 170,000 per year.

Commenting on the awards, Dr Vicky Robinson, Chief Executive of the NC3Rs, said:

“The potential for technological development to replace, reduce and refine the use of animals in science is now well recognised across the research community. Preclinical imaging offers an opportunity for researchers to greatly reduce and refine animal use through longitudinal studies and identifying earlier endpoints to reduce suffering. However its application is often restricted by limitations with the current technologies available. This strategic funding allows the NC3Rs to target key areas identified by the research community where the development and application of new imaging techniques could have a profound impact on animal use and science.”

Professor Philip Nelson, Chief Executive of the EPSRC, which co-funded £500k of the funding call, said:

“We are delighted to support the NC3Rs. This research builds on our previous collaboration in mathematical modelling in toxicology as well as drawing on and advancing the UK’s first class capability in imaging technologies.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Rising to the Latest Technology Challenges in Animal Research
£1.56 million for proof-of-concepts awarded through the NC3Rs’ CRACK IT Challenges competition.
Thursday, January 30, 2014
£4.8m Funding Awarded for Smart Approaches to Reduce Animal use in Science
NC3Rs grants will develop new testing methods, infrastructure and technologies.
Wednesday, July 31, 2013
£993,000 Challenge Funding Awarded to Develop Animal Research Alternatives and Refinements
CRACK IT seeks proof-of-concepts to replace, reduce and refine animal use across efficacy and safety testing.
Wednesday, February 13, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Towards Patient-Specific Drug Screening
A new breakthrough by the 3D stem cell printing team at Heriot-Watt could pave the way to individually tailored drug testing regimes, both reducing the need for animal testing and ensuring that patients receive drugs which are most effective for their individual needs.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos