Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Vitamin-mediated Cell Delivery of Oligonucleotides – an Attractive Approach for Therapeutic Applications

Published: Wednesday, May 21, 2014
Last Updated: Thursday, May 22, 2014
Bookmark and Share
Link Technologies Ltd has announced the availability of a novel vitamin modifier, which has shown in initial tests to have the potential of improving cell delivery of oligonucleotides.

The new reagent, 5’-Niacin-CE Phosphoramidite, is easily incorporated during solid phase oligo synthesis. The niacin-based modifier from Link offers several advantages over the use of conventional lipophilic delivery agents, including reduced risk of in vivo toxicity, and removes the necessity of cleaving the delivery reagent once in the cell. These benefits make vitamins, including niacin, an attractive method for the delivery of therapeutic oligonucleotides, such as siRNA, into cells.

While lipophilic modifier reagents have been shown to enhance cell penetration, vitamin-mediated cell delivery offers a distinct advantage due to the fact that vitamins are required, but not produced by cells. As such, it is believed that interaction with a specific binding protein is required before the vitamin-oligo conjugate is internalised. Not only does this enhance delivery and overcome the risk of toxicity, as the vitamin-based reagents are recognised by the cell, but it also offers some exciting potential for cell targeting.

Derived from niacin, an essential vitamin heavily involved in the biosynthesis of NAD and NADH, Link’s new vitamin modifier, 5’-Niacin-CE Phosphoramidite, is significantly less hydrophobic and less bulky than existing delivery agents. Whereas large lipophilic modifiers can supress an oligo’s function in vivo and therefore require cleaving, which is difficult to control, it is expected that with vitamin-based modifiers, intracellular cleavage of modifiers is not necessary. Potentially, this will lead to a reduction in required dosage of the therapeutic oligonucleotide, importantly minimising the risk of drug toxicity and side effects to the patient.

Catherine McKeen, Head of Technology Commercialisation, explained: “The ability to incorporate vitamin modifiers during oligo synthesis opens up significant potential to utilise a range of vitamin-oligonucleotide conjugates as a means of enhanced cellular uptake of therapeutic oligonucleotides.  5’-Niacin-CE Phosphoramidite is the second vitamin-based reagent in Link’s portfolio, alongside our tocopherol modifiers, and we will continue to add to this range.”



Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Growing Stem Cells More Safely
Nurturing stem cells atop a bed of mouse cells works well, but is a non-starter for transplants to patients – Brown University scientists are developing a synthetic bed instead.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Experimental Drug Cancels Effect from Key Intellectual Disability Gene
A University of Wisconsin—Madison researcher who studies the most common genetic intellectual disability has used an experimental drug to reverse — in mice — damage from the mutation that causes the syndrome.
Common Class of Cancer Drugs May Not Lead to Cognitive Decline
UCLA study refutes 2015 research suggesting anthracyclines could cause memory loss, other impairments.
Designing Better Drugs
A rational drug engineering approach could breathe new life into drug development.
Genetic Approach May Lead to New Treatments for Digestive Diseases
Researchers at UMass Medical School have identified a new molecular pathway critical for maintaining the smooth muscle tone that allows the passage of materials through the digestive system.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!