Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chemical Signature of Manic Depression Discovered by Scientists

Published: Thursday, February 07, 2008
Last Updated: Thursday, February 07, 2008
Bookmark and Share
People with manic depression have a distinct chemical signature in their brains, according to a new study.

People with manic depression have a distinct chemical signature in their brains, according to a new study. The research, published in the journal Molecular Psychiatry, may also indicate how the mood stabilizers used to treat the disorder counteract the changes in the brain that it appears to cause.

Manic depression, which is also known as bipolar disorder, is a debilitating psychiatric condition characterized by alternating mania and depression, affecting about one in every hundred people worldwide.

Although it is known that the condition can be treated relatively effectively using the mood-stabilizing drugs lithium and valproic acid, the reasons why these treatments work are poorly understood.

The authors of the new study, from Imperial College London, the University of Cambridge, and the National Institutes of Mental Health in the US, hope that their research will enable a better understanding of the condition and of how it can be treated.

The researchers compared postmortem brain tissue samples of people with manic depression with those of age and gender matched controls. The samples were taken from the dorsolateral prefrontal cortex, which controls the processes involved in higher cognitive functioning. The researchers analyzed these samples using Nuclear Magnetic Resonance spectroscopy and found that people with manic depression had different concentrations of chemicals in this area of the brain than those without.

The researchers also used rat models to see the effects of lithium and valproic acid on the metabolite makeup of non-bipolar brain tissue. They found that these drugs caused the opposite chemical changes to those seen in the bipolar brain tissue samples. Chemicals that were increased in the bipolar brain tissue were decreased in rats given the mood stabilizing drugs, and vice versa.

The researchers' findings lead them to believe that an upset in the balance of different neurotransmitters known as excitatory and inhibitory neurotransmitters, which are involved in sending signals in the brain, may be central to the disorder. The study also suggests that lithium and valproic acid work by restoring the balance of these neurotransmitters in the brain.

Levels of glutamate, an amino acid which acts as a neurotransmitter in the central nervous system, were increased in post mortem bipolar brain but glutamate / glutamine ratios were decreased following valproate treatment. Levels of another neurotransmitter, gamma-aminobutyric acid, were increased after lithium treatment and decreased in the bipolar brain. Both creatine and myo-inositol were increased in the post-mortem brain but depleted with the medications.

Dr Tsz Tsang, one of the authors of the study from the Department of Biomolecular Medicine at Imperial College London, said: "By identifying a distinct biochemical profile in patients with bipolar disorder, our new research provides a valuable insight into the origins and causes of the disease. Moreover, the changes we see in people's metabolic signatures may give a target for drug therapy, allowing us to see how effective a drug is at correcting these changes.

"In this instance, we have already shown that the biochemical changes which valproic acid and lithium bring about in mammalian models represent almost a mirror image of the perturbations in bipolar disorder. This may provide a useful insight to the actions of these treatments and a basis for which to improve therapy in the future," added Dr Tsang.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Iron in the Blood Could Cause Cell Damage
Concentrations of iron similar to those delivered through standard treatments can trigger DNA damage within 10 minutes, when given to cells in the laboratory.
Friday, February 12, 2016
New Technique Negotiates Neuron Jungle To Target Source Of Parkinson’s Disease
Researchers from Imperial College London and Newcastle University believe they have found a potential new way to target cells of the brain affected by Parkinson’s disease.
Wednesday, September 23, 2015
Using Human Stem Cells To Identify Dangerous Side Effects Of Drugs
Scientists have developed a test that uses cells from a single donor's blood to predict whether a new drug will cause a severe reaction in humans.
Monday, March 09, 2015
Switch that Enables Salmonella to Sabotage Host Cells Revealed in new Study
A new switch that enables Salmonella bacteria to sabotage host cells is revealed in a study published in the journal Science.
Friday, April 23, 2010
Research Reveals Exactly How Coughing is Triggered by Environmental Irritants
Scientists identify the reaction inside the lungs that can trigger coughing when a person is exposed to particular irritants in the air.
Monday, November 23, 2009
Drug Shrinks Lung Cancer Tumours in Mice
A potential new drug for lung cancer has eliminated tumours in 50% of mice in a new study published today in the journal Cancer Research.
Monday, November 09, 2009
Scientists Discover new Genetic Variation that Contributes to Diabetes
Study identifies a genetic variation in people with type 2 diabetes that affects how the body's muscle cells respond to the hormone insulin.
Tuesday, September 08, 2009
Urine Samples could be Used to Predict Responses to Drugs, Say Researchers
Researchers show possibility to predict how different individuals would deal with one drug by looking at metabolites in their urine.
Tuesday, August 11, 2009
Schizophrenia Linked to Signaling Problems in New Brain Study
The study supports the theory that abnormalities in the way in which cells 'talk' to each other are involved in the disease.
Wednesday, March 04, 2009
Liver Damage in Hepatitis C Patients Could be Treated with Warfarin
The drug warfarin may help prevent liver failure in thousands of people with Hepatitis C, according to new research.
Friday, August 01, 2008
Alzheimer's Disease Patients Show Improvement in Trial of new Drug
A new drug has been shown to improve the brain function of Alzheimer's patients and reduce a key protein associated with the disease in the spinal fluid.
Wednesday, July 30, 2008
Gene Sequence that can make Half of us Fatter is Discovered
Researchers have found a gene sequence linked to an expanding waist line, weight gain and a tendency to develop type 2 diabetes.
Monday, May 05, 2008
Targeting Gut Bugs could Revolutionize Future Drugs, say Researchers
Revolutionary new ways to tackle certain diseases could be provided by creating drugs which change the bugs in people's guts.
Monday, February 04, 2008
Research Showing How Drugs Stick to a Key Protein
This information should help scientists to modify the structures of drugs to improve their effectiveness.
Monday, October 17, 2005
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Vitamin A May Help Improve Pancreatic Cancer Chemotherapy
The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London (QMUL).
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Non-Toxic Approach to Treating Variety of Cancers
A team of researchers at Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine recently discovered a novel, non-toxic approach to treating a wide variety of cancers.
Making Injectable Medicine Safer
Researchers remove excess additives from drugs, which could reduce the odds of serious allergic reactions and other side effects.
An Old-New Weapon Against Emerging Chikungunya Virus
Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!