Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>Products>This Product
  Products


High Content Toxicology: CellCiphr® Premier

Product Image
Product Description
Hepatotoxicity is one of the main reasons for drug withdrawals, accounting for 37% of all therapeutics taken off the market between 1994 and 2006.

CellCiphr® Premier combines an extended panel of toxicologically-relevant endpoints with Cyprotex’s CellCiphr® classifier to provide one of the most reliable clinical hepatotoxicity predictors available (sensitivity = 70% and specificity = 100%).

Both HepG2 (replicating cells) and primary rat hepatocytes (metabolically competent cells) are investigated at multiple time points (extending from 4 hrs to 5 days to identify early and late stage toxic effects).

The data can be integrated with actual or predicted Cmax to correct for exposure-related effects.

The extended panel of end points allows CellCiphr® Premier to offer enhanced predictivity for hepatotoxicity risk over the standard CellCiphr® panels.
Product High Content Toxicology: CellCiphr® Premier
Company Cyprotex
Price Request a quote
More Information View company product page
Catalog Number Unspecified
Quantity Unspecified
Company Logo

Cyprotex
15 Beech Lane, Macclesfield, Cheshire SK10 2DR United Kingdom

Tel: +44 (0)1625 505100



Scientific News
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
Common Medications Could Delay Brain Injury Recovery
Drugs used to treat common complaints could delay the recovery of brain injury patients according to research by University of East Anglia (UEA) and University of Aberdeen scientists, published today in Brain Injury.

SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!