Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>Resources>Application Notes>This Application Note
  Application Notes
Scientific News
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
Chemical Used to Replace BPA is Potentially Toxic
This study is the first to examine the effects of BPA and BPS on brain cells and genes that control the growth and function of organs involved in reproduction.
A Better Model for Parkinson's
Scientists at EPFL solve a longstanding problem with modeling Parkinson’s disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
Scroll Up
Scroll Down

Rapid Critical Micelle Concentration (CMC) Determination Using Fluorescence Polarization
Bookmark and Share

BioTek Instruments

This application note describes the rapid semi-automated determination of CMC values for surfactants in 384-well microplates using fluorescence polarization. 

These data demonstrate that the use of DAF fluorescence polarization as a means to determine the CMC values for surfactants is not only easy and accurate, but that the method can also be easily scaled for large sample numbers. Unlike fluorescence intensity, fluorescence polarization uses a ratio of two measurements on each well, correcting for differences in intensity brought about by experimental conditions, such as pH, temperature, and surfactant concentration. The Synergy Neo reader is a high throughput reader specifically designed for the measurement of large numbers of samples. 

The reader uses modular optic cubes to measure numerous read modalities, which include UV-Vis absorbance, luminescence, fluorescence intensity, time resolved fluorescence, HTRF®, AlphaScreen®, and fluorescence polarization. In regards to fluorescence polarization, the reader is capable of simultaneously determining parallel and perpendicular measurements. Gen5™ software (BioTek instruments) not only controls reader function, but also is capable of automatically performing the 4-parameter logistic fit and calculating CMC values.


Further Information

Related Content

BioTek Instruments and Global Cell Solutions set to Collaborate
BioTek Instruments, Inc., and Global Cell Solutions, Inc., (GCS) announce a formal collaboration for the coming year at LabAutomation 2010. The poster Automation of a Microplate Cell-based Assay to Measure Activity of the Histamine H1 G Protein-coupled Receptor Using a Novel 3-D Cell Culture Technique is the first in a series of collaborative publications detailing the use of BioTek’s microplate instrumentation for various cell-based assays.
Wednesday, January 27, 2010
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!