Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Breeding potatoes with improved properties

Published: Tuesday, November 30, 2010
Last Updated: Tuesday, November 30, 2010
Bookmark and Share
It is possible to breed potatoes in such a way that they produce new types of starch for use as a new and improved plant-based raw material in the construction, paper, glue, fodder and food industries.

It is possible to breed potatoes in such a way that they produce new types of starch for use as a new and improved plant-based raw material in the construction, paper, glue, fodder and food industries. These results are described in Xingfeng Huang’s PhD thesis, which he will defend on 29 November 2010 to obtain his doctoral degree at Wageningen University. Using genetic modification, Huang managed to develop potatoes with larger starch granules, a higher capacity to retain water after several cycles of freeze/thaw (interesting, fro example, with frozen meals) and have a stronger capacity to form gels (useful when making sauces). The cells of potato tubers contain starch in the form of starch granules. The plant produces these granules because enzymes adhere to the outside of the granule, building up the starch granule. The enzymes adhere to the granules because a specific part of the enzyme, the so-called Starch Binding Domain, is able to recognise starch. Enzyme cooperation The way the granule is built up depends on the activity of the rest of the enzyme. The cooperation between the enzymes involved in starch biosynthesis affects the shape and size of the starch granules, as well as other starch properties such as the ability to ‘bind’ water, as required when making sauces and soups. There are bacteria that contain enzymes involved in the breakdown of starch and these enzymes also have a Starch Binding Domain. They often have a slightly different function than the enzymes already present in the potato. If potatoes were able to produce these enzymes, it would probably result in starch granules with new characteristics. This could make the potato an even better source for plant-based raw materials; materials that are sustainably produced in plants. New starch via new enzymes Via genetic modification, Huang introduced genes in the potato which code for proteins that combine a Starch Binding Domain with different bacterial enzymes involved in starch modification. Huang discovered that the new ‘fusion enzymes’ often caused the potato plants to produce starch granules with an entirely different appearance than the granules usually found in potato cells. When Huang used the gene for the amylosucrase enzyme of the Neisseria polysaccharea bacteria, it also changed other important characteristics of the starch granules. The granules were on average twice as large, for instance, and the starch was more capable of ‘binding’ fluids. This means that smaller amounts of starch can produce the same viscosity in, for example, sauces and desserts. It was also shown that the new starch granules were better at retaining water, which is highly relevant to frozen food products. When the starch in these products discharges too much water, they can often no longer be used once they have been defrosted. Huang’s research shows that it is indeed possible to develop potatoes that produce new, better sustainable raw materials. Potato starch is already being used in the construction paper, glue, fodder and food industries. New types of starch could benefit these and other possible applications.

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

First South American Plant for Purifying Soils Contaminated with Zinc and Cadmium
Gomphrena claussenii easily grows on contaminated soil near zinc mines and takes up large amounts of heavy metals.
Wednesday, July 03, 2013
Large-Scale Edible Insect Farming Needed to Ensure Global Food Security
Scientists tackle problems of feeding the ever-increasing global population and providing them with enough animal protein.
Friday, May 10, 2013
Organic Chickens Express More Cholesterol Gene
Study reveals that organic chickens have higher expressed genes involved in the creation of cholesterol,
Friday, January 22, 2010
Scientific News
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on the Origin of the Date Palm
Researchers also find ‘genetic mutation’ that is responsible for dates’ color.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Speeding Up Potato Breeding
A joint project is investigating the potential of drones for speeding up the development of new potato varieties.
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Ancestors of Land Plants Were Wired to Make the Leap to Shore
When the algal ancestor of modern land plants made the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos