Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

'Mini-Cellulose' Molecule Unlocks Biofuel Chemistry

Published: Monday, February 20, 2012
Last Updated: Monday, February 20, 2012
Bookmark and Share
A team of chemical engineers at the University of Massachusetts Amherst has discovered a small molecule that behaves the same as cellulose when it is converted to biofuel.

Studying this 'mini-cellulose' molecule reveals for the first time the chemical reactions that take place in wood and prairie grasses during high-temperature conversion to biofuel.

The new technical discovery was reported in the January 2012 issue of the journal Energy & Environmental Science and highlighted in Nature Chemistry.

The "mini-cellulose" molecule, called α-cyclodextrin, solves one of the major roadblocks confronting high-temperature biofuels processes such as pyrolysis or gasification. The complex chemical reactions that take place as wood is rapidly heated and breaks down to vapors are unknown. And current technology doesn't allow the use of computer models to track the chemical reactions taking place, because the molecules in wood are too large and the reactions far too complicated.

Paul Dauenhauer, assistant professor of chemical engineering and leader of the UMass Amherst research team, says the breakthrough achieved by studying the smaller surrogate molecule opens up the possibility of using computer simulations to study biomass. He says, "We calculated that it would take about 10,000 years to simulate the chemical reactions in real cellulose. The same biofuel reactions with 'mini-cellulose' can be done in a month!"

Already his team has used insight from studying the "mini-cellulose" to make significant progress in understanding wood chemistry, Dauenhauer says. Using the faster computer simulations, they can track the conversion of wood all the way to the chemical vapor products. These reactions include creating furans, molecules that are important for the production of biofuels.

The discovered reactions occurring within wood will serve as the basis for designing advanced biofuel reactors, Dauenhauer says. By creating reaction models of wood conversion, the scientists can design biomass reactors to optimize the specific reactions that are ideal for production of biofuels. For biofuels production, "We want to maximize our new pathway to produce furans and minimize the formation of gases such as CO2," says Dauenhauer.

The discovery of "mini-cellulose" was enabled by a new experimental technique for studying high-temperature biomass chemistry called "thin-film pyrolysis." It involves creating sheets of cellulose, which makes up 60 percent of wood biomass, that are very thin, just a few microns thick. When the sheets are very rapidly heated at over one million degrees Celsius per minute, they create volatile chemicals which are the precursors of biofuel.

Dauenhauer joined the university in 2009 and conducts his research as part of the Catalysis Center for Energy Innovation in collaboration with the University of Delaware and funded by the U.S. Department of Energy (DOE). His research team includes Professor Dion Vlachos and graduate students Matt Mettler, Alex Paulsen and Samir Mushrif.

Dauenhauer has received several high-profile grants in the past year. In May 2011, he awarded a five-year, $800,000 Early Career Award in Basic Energy Sciences from the DOE. The grant provides support for his research on understanding the catalysts that control the process of breaking down plant matter into chemicals and fuel byproducts.

In February 2011, he was awarded a one-year, $80,000 grant from the National Science Foundation to conduct basic research on pyrolysis. Additionally in 2011, he was awarded a three-year Young Faculty Award from the 3M Corporation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
New Discovery May Benefit Farmers Worldwide
Scientists have shown how a crop-microbe 'team' protect against fungal infection.
Antibiotic Resistance Can Occur Naturally in Soil Bacteria
Scientists have found natural anti-biotic resistant bacteria in soils with little to no human exposure.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Breakthrough in Plant Salt-Tolerance Research
Researchers have made a breakthrough in plant salt tolerance that could lead to new salt tollerant crop types.
Microbes Help Plants Survive In Severe Drought
Researchers discover plants survive better under drought conditions with help from natural microbes.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!