Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Wine Grape Metabolism Unveiled in Critical Database

Published: Thursday, March 29, 2012
Last Updated: Friday, March 30, 2012
Bookmark and Share
Four new online databases have been launched that offer an unprecedented view of the biochemical pathways controlling the metabolism of corn, soybeans, wine grapes, and cassava.

The Plant Metabolic Network (, which is based at Carnegie’s Department of Plant Biology, has launched four new online databases that offer an unprecedented view of the biochemical pathways controlling the metabolism of corn, soybeans, wine grapes, and cassava—four important species of crop plant. The new databases will serve as a critical resource for scientists working with these species to increase crop production, enhance biofuel development, or explore novel medicines. 

Meeting the ever-expanding demand for food, biofuel and phyto-pharmaceutical production will require a comprehensive understanding of the enzymes, biochemical pathways and regulatory networks that control metabolism in plants. The goal of the Plant Metabolic Network is to facilitate such understanding by providing a detailed, genome-scale view of the chemical reactions taking place in plant cells. These metabolic reactions include those that convert carbon dioxide and sunlight into chemical energy, import essential mineral nutrients from the soil into plant roots, aid plants in defending against environmental stress, and otherwise allow plants to maintain life. By providing rich information on these processes, the Plant Metabolic Network enables efforts to elucidate steps in poorly understood plant biochemical processes, as well as discover unique, previously uncharacterized enzymes important to plant life.

The Plant Metabolic Network research team consists of plant scientists, scientific curators, post-doctoral scholars, and student interns. It is led by Carnegie staff scientist Sue Rhee. The group employs a number of approaches to generate the information housed in each database, integrating techniques and concepts from a wide range of fields including molecular sequence analysis, artificial intelligence, statistics, plant molecular biology, and plant biochemistry.

The team created a computational pipeline called E2P2 to perform metabolism-related discovery on sequenced plant genomes in order to place the rapidly expanding pool of plant genomic and transcriptomic sequence data into a metabolic framework. Importantly, the pipeline allows for a consistent, systematic, and high throughput approach for metabolism-related analysis of plant genome data. The data generated by the pipeline is rigorously reviewed using the scientific literature to ensure the quality of each released database. Up to ten more databases will be forthcoming later this year. Corn, soybeans, wine grapes, and cassava were selected for early release because of their economic and agricultural importance to various regions.

“Wine grapes are an important crop for the state of California; corn and soybeans are the number one and two crops of the United States, both as a source of food and biofuel; cassava—also called manioc and yuca—is one of the most-common sources of food worldwide and a tremendously important crop for combating hunger,” said Dr. Rhee. “That’s why we decided to release the databases for these plants right away, even before we started preparing a manuscript describing this work, to help researchers get started in improving production and yield of these crucial crops.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on the Origin of the Date Palm
Researchers also find ‘genetic mutation’ that is responsible for dates’ color.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Speeding Up Potato Breeding
A joint project is investigating the potential of drones for speeding up the development of new potato varieties.
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos