Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Wine Grape Metabolism Unveiled in Critical Database

Published: Thursday, March 29, 2012
Last Updated: Friday, March 30, 2012
Bookmark and Share
Four new online databases have been launched that offer an unprecedented view of the biochemical pathways controlling the metabolism of corn, soybeans, wine grapes, and cassava.

The Plant Metabolic Network (http://www.plantcyc.org/), which is based at Carnegie’s Department of Plant Biology, has launched four new online databases that offer an unprecedented view of the biochemical pathways controlling the metabolism of corn, soybeans, wine grapes, and cassava—four important species of crop plant. The new databases will serve as a critical resource for scientists working with these species to increase crop production, enhance biofuel development, or explore novel medicines. 

Meeting the ever-expanding demand for food, biofuel and phyto-pharmaceutical production will require a comprehensive understanding of the enzymes, biochemical pathways and regulatory networks that control metabolism in plants. The goal of the Plant Metabolic Network is to facilitate such understanding by providing a detailed, genome-scale view of the chemical reactions taking place in plant cells. These metabolic reactions include those that convert carbon dioxide and sunlight into chemical energy, import essential mineral nutrients from the soil into plant roots, aid plants in defending against environmental stress, and otherwise allow plants to maintain life. By providing rich information on these processes, the Plant Metabolic Network enables efforts to elucidate steps in poorly understood plant biochemical processes, as well as discover unique, previously uncharacterized enzymes important to plant life.

The Plant Metabolic Network research team consists of plant scientists, scientific curators, post-doctoral scholars, and student interns. It is led by Carnegie staff scientist Sue Rhee. The group employs a number of approaches to generate the information housed in each database, integrating techniques and concepts from a wide range of fields including molecular sequence analysis, artificial intelligence, statistics, plant molecular biology, and plant biochemistry.

The team created a computational pipeline called E2P2 to perform metabolism-related discovery on sequenced plant genomes in order to place the rapidly expanding pool of plant genomic and transcriptomic sequence data into a metabolic framework. Importantly, the pipeline allows for a consistent, systematic, and high throughput approach for metabolism-related analysis of plant genome data. The data generated by the pipeline is rigorously reviewed using the scientific literature to ensure the quality of each released database. Up to ten more databases will be forthcoming later this year. Corn, soybeans, wine grapes, and cassava were selected for early release because of their economic and agricultural importance to various regions.

“Wine grapes are an important crop for the state of California; corn and soybeans are the number one and two crops of the United States, both as a source of food and biofuel; cassava—also called manioc and yuca—is one of the most-common sources of food worldwide and a tremendously important crop for combating hunger,” said Dr. Rhee. “That’s why we decided to release the databases for these plants right away, even before we started preparing a manuscript describing this work, to help researchers get started in improving production and yield of these crucial crops.”




Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Accelerating Forage Breeding to Boost Livestock Productivity
International expert skill-sets in genomics and bioinformatics enhance our capacity to breed improved forages for Africa.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
So Long, Snout
Research helps answer how birds got their beaks.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Algae Nutrient Recycling is a Triple Win
Sandia method cheaper, greener and cuts competition for fertilizer.
Non-Transgenic Rapeseed Product Launched For Chinese Market
Cibus and Rotam have announced a new agreement to cooperate in the development of herbicide-tolerant rapeseed in China.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
BESC Creates Microbe That Bolsters Isobutanol Production
Another barrier to commercially viable biofuels from sources other than corn has fallen with the engineering of a microbe that improves isobutanol yields by a factor of 10.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!