Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Wine Grape Metabolism Unveiled in Critical Database

Published: Thursday, March 29, 2012
Last Updated: Friday, March 30, 2012
Bookmark and Share
Four new online databases have been launched that offer an unprecedented view of the biochemical pathways controlling the metabolism of corn, soybeans, wine grapes, and cassava.

The Plant Metabolic Network (, which is based at Carnegie’s Department of Plant Biology, has launched four new online databases that offer an unprecedented view of the biochemical pathways controlling the metabolism of corn, soybeans, wine grapes, and cassava—four important species of crop plant. The new databases will serve as a critical resource for scientists working with these species to increase crop production, enhance biofuel development, or explore novel medicines. 

Meeting the ever-expanding demand for food, biofuel and phyto-pharmaceutical production will require a comprehensive understanding of the enzymes, biochemical pathways and regulatory networks that control metabolism in plants. The goal of the Plant Metabolic Network is to facilitate such understanding by providing a detailed, genome-scale view of the chemical reactions taking place in plant cells. These metabolic reactions include those that convert carbon dioxide and sunlight into chemical energy, import essential mineral nutrients from the soil into plant roots, aid plants in defending against environmental stress, and otherwise allow plants to maintain life. By providing rich information on these processes, the Plant Metabolic Network enables efforts to elucidate steps in poorly understood plant biochemical processes, as well as discover unique, previously uncharacterized enzymes important to plant life.

The Plant Metabolic Network research team consists of plant scientists, scientific curators, post-doctoral scholars, and student interns. It is led by Carnegie staff scientist Sue Rhee. The group employs a number of approaches to generate the information housed in each database, integrating techniques and concepts from a wide range of fields including molecular sequence analysis, artificial intelligence, statistics, plant molecular biology, and plant biochemistry.

The team created a computational pipeline called E2P2 to perform metabolism-related discovery on sequenced plant genomes in order to place the rapidly expanding pool of plant genomic and transcriptomic sequence data into a metabolic framework. Importantly, the pipeline allows for a consistent, systematic, and high throughput approach for metabolism-related analysis of plant genome data. The data generated by the pipeline is rigorously reviewed using the scientific literature to ensure the quality of each released database. Up to ten more databases will be forthcoming later this year. Corn, soybeans, wine grapes, and cassava were selected for early release because of their economic and agricultural importance to various regions.

“Wine grapes are an important crop for the state of California; corn and soybeans are the number one and two crops of the United States, both as a source of food and biofuel; cassava—also called manioc and yuca—is one of the most-common sources of food worldwide and a tremendously important crop for combating hunger,” said Dr. Rhee. “That’s why we decided to release the databases for these plants right away, even before we started preparing a manuscript describing this work, to help researchers get started in improving production and yield of these crucial crops.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Ancestors of Land Plants Were Wired to Make the Leap to Shore
When the algal ancestor of modern land plants made the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.
Photosynthesis Gene Could Help Crops Grow in Adverse Conditions
A gene that helps plants to remain healthy during times of stress has been identified by researchers at Oxford University.
Pancreatic Cancer Stem Cells Could be "Suffocated" by Anti-diabetic Drug
A new study shows that pancreatic cancer stem cells (PancSCs) are virtually addicted to oxygen-based metabolism, and could be “suffocated” with a drug already used to treat diabetes.
Scientists Learn How to Predict Plant Size
VIB and UGent scientists have developed a new method which allows them to predict the final size of a plant while it is still a seedling.
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Nanoporous Gold Sponge Makes Pathogen Detector
Sponge-like nanoporous gold could be key to new devices to detect disease-causing agents in humans and plants, according to UC Davis researchers.
Genetic Manipulation for Algal Biofuel Production
Studies of the genes involved in oil synthesis in microalgae allow scientists to use a gene promoter to increase algal production of triacylglycerols, which in turn enhances potential biofuel yields.
Phosphorous Fertilizer
UD researchers identify behaviors of nanoparticle that shows promise as nanofertilizer.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos