Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

How Genomics is Enabling the Future of Plant Biology

Published: Thursday, June 14, 2012
Last Updated: Thursday, June 14, 2012
Bookmark and Share
Given the economic, ecological, and climatic importance of plants, scientists will continue to discover ways to facilitate their genome characterization. The NSF, it says, will continue to support the “genomics empowered” plant research to tackle fundamental questions in plant and agricultural sciences on a genome-wide scale, and the development of tools and resources for plant genome research including novel technologies and analysis tools that will enable discovery.

Enabling the Future of Plant Biology

Plant genomics impacts crop productivity, biodiversity, and climate change and is of increasing importance worldwide.

- Patricia F. Dimond, Ph.D., Genetic Engineering and Biotech News, Insight & Intelligence™ : Jun 14, 2012

Next-generation DNA sequencing methods have provided the tools to enable a revolution in plant biology. But plant genome sequencing remains highly challenging. According to plant scientists, the simple appearance of plants belies their extraordinary genomic complexity. Despite recent achievements in sequencing technology, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms.

These challenges include the repetitive nature of plant genomes, one considerable obstacle that has hindered reliable assembly of a complete plant genome. This, scientists say, is due to the high copy number and amplifying nature of transposable elements within a large number of plant genomes. But plant genomics scientists and instrument developers are finding ways around the challenges, and a lot of government and private investment currently supports plant genomic enterprises.


The human genome has as many genes (about 22,000) as some mosses and less than half the number of genes in alfalfa or apple. Plants like coastal pines and redwoods lug around 3.2 billion nucleotides in their genomes, making them 10 times larger than the human variety. And the additional genome within each plant cell that encodes genes required to execute photosynthesis further complicates genomic analysis.


The study of plant genomics impacts crop productivity, biodiversity, and climate change, and has become a priority to some funding institutions. The NSF said in 2011 that it would provide $5 million in 2012 to continue funding its Plant Genome Research Program (PGRP), an effort that has been under way since 1998 supporting plant genome biology research.


The $101.6 million that the National Science Foundation granted in 1998 for plant genome sequencing projects was distributed among 32 sequencing and functional genomics projects. These projects focused on analyzing gene function and interactions between genomes and the environment in crop plants including cotton, corn, rice, soybean, tomato, and wheat.


In its latest funding announcement, NSF said it expects to support 10 to 15 grants beginning in October 2012 for projects that pursue innovative ideas in basic research and tools development that will advance crop plant science and the plant biology realm in general.


The NSF stressed the need for development of new research tools, particularly for high-throughput phenotyping platforms, saying that it will give priority to development of new tools that may contribute broadly to the field of plant genomics. These include research to improve tools for genome sequence assembly and analysis, novel methods for high-throughput phenotyping, and improved data-visualization tools.


In 2008, shortly after the announcement of the Human 1000 Genomes Project, the University of Albert announced the 1000 Plant Genomes Project. A large-scale genomics enterprise intended to take advantage of the speed and efficiency of next-generation DNA sequencing, the project is headed by Gane Ka-Shu Wong and Michael Deyholos. The project aims to obtain the transcriptome (expressed genes) of 1,000 different plant species over the next few years.


While the stated purposes of the program include determination of the evolutionary relationships among the known plant species. The project focuses on plants with commercial potential. These plants produce valuable chemicals or secondary metabolites, with the hope that characterization of the involved genes will allow modification of the underlying biosynthetic processes.

And scientists say, similarly to the focus of the 1000 Plant Genomes Project, de novo transcriptome assembly has already provided an alternative approach to get around complex plant genomes.\

In 2011, scientists at the Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Institute of BioScience and Technology, Haikou, China, reported the use of next-generation massively parallel sequencing and de novo transcriptome assembly to analyze the transcriptome of the only source of commercial natural rubber, Hevea brasiliensis.

The sequencing output, the scientists said, generated more than 12 million reads with an average length of 90 nt. In total 48,768 unigenes were assembled through de novo transcriptome assembly. Out of 13,807 H. brasiliensis cDNA sequences deposited in Genbank of the National Center for Biotechnology Information (NCBI) (as of February 2011), 11,746 sequences (84.5%) could be matched with the assembled unigenes through nucleotide BLAST.

The scientists said their data provides the most comprehensive sequence resource available for the study of rubber trees and demonstrates the effective use of Illumina sequencing and de novo transcriptome assembly in a species lacking genomic information.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Faster, Better, Cheaper: a New Method to Generate Extended Data for Genome Assemblies
The Genome Analysis Centre have developed a new library construction method for genome sequencing that can simultaneously construct up to 12 size-selected long mate pair (LMP) or ‘jump’ libraries ranging in sizes from 1.7kb to 18kb with reduced DNA input, time and cost.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!