Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Findings Point to Fungi as Prime Suspects in Fossil Fuel Mystery

Published: Tuesday, July 03, 2012
Last Updated: Tuesday, July 03, 2012
Bookmark and Share
Clark research plays key role in landmark paper on fungal genome evolution.

More than 300 million years ago, coal production on the planet came to a sudden stop, leaving a puzzle for scientists. What happened? Newly published research by Clark University biology Professor David Hibbett and an international team of scientists suggests an answer to the mystery.

In a paper titled “The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes,” senior author Hibbett and co-authors present findings from fungal analyses of 31 genomes, including 12 newly generated for the project by the U.S. Department of Energy Joint Genome Institute. The findings appear June 29 in the prestigious Science magazine.

“This research, which is significantly expanding genomic coverage of fungal evolution, presents evidence for what may have brought a sudden halt to the Carboniferous period,” Hibbett said. “Fungi could be the cause.”

Coal is now a mega-commodity, generating nearly half of the electricity in the United States, according to the American Coal Foundation. The plant polymer lignin, which is a component of plant cell walls, gave rise to coal deposits for an estimated 60 million years. Evolution of fungi that can break down the lignin may have been a factor for the sudden drop in coal production. Hibbett noted that enzymes in fungi are prime decayers of wood—a property that presents potential applications for biofuels research.

The work on this project represents a “true community of effective practice,” Hibbett said, deeply involving both undergraduates and graduates. The students worked at annotating the genome, a very labor-intensive process. Even as undergraduates, they were well prepared for the task, having been introduced to this skill through a course taught by assistant professor of biology Heather Wiatrowski. In 2009-10, Wiatrowski coordinated the Undergraduate Research Program in Microbial Genome Annotation, also supported by a JGI grant. Once with the Hibbett Lab more recently, the undergraduates were further trained in genome annotation by Clark Ph.D. student Dimitris Floudas, eventually becoming co-authors of the paper in Science, a remarkable outcome for undergraduates anywhere, Hibbett noted.

“The team for this project includes our lab group here at Clark with national and international partners,” Hibbett said. “Science is the important part, but the community aspect of this research is a significant part. It’s not just one person toiling away in a lab. The real-world connections and scientific impact are extensive.”

Ten of the 71 authors who contributed to the paper are from Clark. Besides senior author Hibbett, co-authors include: Ph.D. student Floudas; former research scientist Manfred Binder; master’s students Darcy Young ’11 and Dylan Glotzer ’11; Clark post-doctoral fellow Laszlo Nagy; and Clark undergraduates Nathan Kallen ’12, Alexis Carlson ’13, Albee Ling (transfer), and Rachael Martin ’13.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Accelerating Forage Breeding to Boost Livestock Productivity
International expert skill-sets in genomics and bioinformatics enhance our capacity to breed improved forages for Africa.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
So Long, Snout
Research helps answer how birds got their beaks.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Algae Nutrient Recycling is a Triple Win
Sandia method cheaper, greener and cuts competition for fertilizer.
Non-Transgenic Rapeseed Product Launched For Chinese Market
Cibus and Rotam have announced a new agreement to cooperate in the development of herbicide-tolerant rapeseed in China.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
BESC Creates Microbe That Bolsters Isobutanol Production
Another barrier to commercially viable biofuels from sources other than corn has fallen with the engineering of a microbe that improves isobutanol yields by a factor of 10.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!