Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Findings Point to Fungi as Prime Suspects in Fossil Fuel Mystery

Published: Tuesday, July 03, 2012
Last Updated: Tuesday, July 03, 2012
Bookmark and Share
Clark research plays key role in landmark paper on fungal genome evolution.

More than 300 million years ago, coal production on the planet came to a sudden stop, leaving a puzzle for scientists. What happened? Newly published research by Clark University biology Professor David Hibbett and an international team of scientists suggests an answer to the mystery.

In a paper titled “The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes,” senior author Hibbett and co-authors present findings from fungal analyses of 31 genomes, including 12 newly generated for the project by the U.S. Department of Energy Joint Genome Institute. The findings appear June 29 in the prestigious Science magazine.

“This research, which is significantly expanding genomic coverage of fungal evolution, presents evidence for what may have brought a sudden halt to the Carboniferous period,” Hibbett said. “Fungi could be the cause.”

Coal is now a mega-commodity, generating nearly half of the electricity in the United States, according to the American Coal Foundation. The plant polymer lignin, which is a component of plant cell walls, gave rise to coal deposits for an estimated 60 million years. Evolution of fungi that can break down the lignin may have been a factor for the sudden drop in coal production. Hibbett noted that enzymes in fungi are prime decayers of wood—a property that presents potential applications for biofuels research.

The work on this project represents a “true community of effective practice,” Hibbett said, deeply involving both undergraduates and graduates. The students worked at annotating the genome, a very labor-intensive process. Even as undergraduates, they were well prepared for the task, having been introduced to this skill through a course taught by assistant professor of biology Heather Wiatrowski. In 2009-10, Wiatrowski coordinated the Undergraduate Research Program in Microbial Genome Annotation, also supported by a JGI grant. Once with the Hibbett Lab more recently, the undergraduates were further trained in genome annotation by Clark Ph.D. student Dimitris Floudas, eventually becoming co-authors of the paper in Science, a remarkable outcome for undergraduates anywhere, Hibbett noted.

“The team for this project includes our lab group here at Clark with national and international partners,” Hibbett said. “Science is the important part, but the community aspect of this research is a significant part. It’s not just one person toiling away in a lab. The real-world connections and scientific impact are extensive.”

Ten of the 71 authors who contributed to the paper are from Clark. Besides senior author Hibbett, co-authors include: Ph.D. student Floudas; former research scientist Manfred Binder; master’s students Darcy Young ’11 and Dylan Glotzer ’11; Clark post-doctoral fellow Laszlo Nagy; and Clark undergraduates Nathan Kallen ’12, Alexis Carlson ’13, Albee Ling (transfer), and Rachael Martin ’13.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Plant Analysis – Identifying Metabolites
New plant analysis method shows biologically active plant substances are far more common than previously thought.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Biologists Discover Origin of Stomata
Researchers discover genetic mechanism similar in flowering plants and mosses is a result of evolutionary conservation.
Uncovering a World of Viruses
Study that shows human diseases like influenza are derived from those present in invertebrates.
Engineering Bacteria to Aid Ethanol
Splicing in genes for ethanol production into bacteria in order to produce ethanol rather than not lactic acid.
Controlling Cell Division in Plants
Researchers succeeded in developing a new compound, a triarylmethane, that can rapidly inhibit cell division in plants.
Plant Aging Study Produces Insights into Crop Yields
New insights into the mechanism behind how plants age may help scientists better understand crop yields and nutrient allocation.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!