Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Major Grant from Gates Foundation to UK Center to Develop Self-Fertilizing Crops for the Developing World

Published: Monday, July 16, 2012
Last Updated: Monday, July 16, 2012
Bookmark and Share
The John Innes Centre in UK will lead a $9.8m research project to investigate whether it is possible to initiate a symbiosis between cereal crops and bacteria. The symbiosis could help cereals access nitrogen from the air to improve yields.

Major investment to persuade bacteria to help cereals self-fertilise

JULY 15, 2012

The John Innes Centre will lead a $9.8m research project to investigate whether it is possible to initiate a symbiosis between cereal crops and bacteria. The symbiosis could help cereals access nitrogen from the air to improve yields.

The five-year research project, funded by the Bill & Melinda Gates Foundation, could have most immediate benefit for subsistence farmers.

“During the Green Revolution, nitrogen fertilisers helped triple cereal yields in some areas,” said Professor Giles Oldroyd from JIC. “But these chemicals are unaffordable for small-scale farmers in the developing world.”

As a result, yields are 15 to 20 per cent of their potential. Nitrogen fertilisers also come with an environmental cost. Making and applying them contributes half the carbon footprint of agriculture and causes environmental pollution.

“A new method of nitrogen fertilisation is needed for the African Green Revolution,” said Professor Oldroyd. “Delivering new technology within the seed of crops has many benefits for farmers as well as the environment, such as self-reliance and equity,” said Professor Oldroyd.

The new research will investigate the possibility of engineering cereals to associate with nitrogen-fixing bacteria and of delivering this technology through the seed.

If it is found to work, farmers would be able to share the technology by sharing seed. And the research opens the door to the use of grasses as rotational crops to enhance soil nitrogen.

“We’re excited about the long-term potential of this research to transform the lives of small farmers who depend on agriculture for their food and livelihoods,” said Katherine Kahn, senior program officer of Agricultural Development at the Bill & Melinda Gates Foundation.  “We need innovation for farmers to increase their productivity in a sustainable way so that they can lift themselves and their families out of poverty.  Improving access to nitrogen could dramatically boost the crop yields of farmers in Africa.”

The focus of the investigation will be maize, the most important staple crop for small-scale farmers in sub-Saharan Africa. Parallel studies in the wild grass Setaria viridis, which has a smaller genome and shorter life cycle, will speed up the rate of discovery. Discoveries will be applicable to all cereal crops including wheat, barley and rice.

The research will start by attempting to engineer in maize the ability to sense nitrogen-fixing soil bacteria. This may be enough to activate a symbiosis that provides some fixed nitrogen. Even slight increases could improve yields for farmers who do not have access to fertilisers.

“We have developed a pretty good understanding of how legumes such as peas and beans evolved the ability to recruit soil bacteria to access the nitrogen they need,” said Professor Oldroyd. ”Even the most primitive symbiotic relationship with bacteria benefited the plant, and this is where we hope to start in cereals.”

In the most basic symbiosis, bacteria are housed in simple swellings on the root of the plant, providing the low oxygen environment needed. In more highly evolved legumes, the plant produces a specialised organ, the nodule, to house bacteria.

Bacteria can infect the plant through cracks or through more complex tunnels built by the plant called infection threads. As the complexity of the interaction increases, so does the efficiency with which bacteria fix nitrogen for the plant.

“In the long term, we anticipate that the research will follow the evolutionary path, building up the level of complexity and improving the benefits to the plant,” said Professor Oldroyd.

The project will also help highlight where more research is needed. It will run in parallel to ongoing research funded by the Biotechnology and Biological Science Research Council into how nitrogen fixation works in legumes. It will also run in parallel to an existing Gates-funded project, N2Africa, to improve nitrogen management in African farming systems more immediately.


JIC Press Office 

Zoe Dunford,, 01603 255111

Andrew Chapple,, 01603 251490

The John Innes Centre,, is a world-leading research centre based on the Norwich Research Park The JIC’s mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, and to apply its knowledge to benefit agriculture, human health and well-being, and the environment. JIC delivers world class bioscience outcomes leading to wealth and job creation, and generating high returns for the UK economy. JIC  is one of eight institutes that receive strategic funding from the Biotechnology and Biological Sciences Research Council.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

“Growing” Medicines in Plants Requires new Regulations
Scientists say amending an EU directive on GMOs could help stimulate innovation in making cheaper vaccines, pharmaceuticals and organic plastics using plants.
Wednesday, February 20, 2013
New Method for Associating Genetic Variation With Crop Traits
A new technique will allow plant breeders to introduce valuable crop traits even without access to the full genome sequence of that crop.
Tuesday, July 24, 2012
Genomics unlocks key to Mendel's pea flowers
John Innes Centre scientists have helped discover the key to one of biology's most well-known experiments - the gene that controls pea flower colour, used by Gregor Mendel in his initial studies of inheritance.
Wednesday, October 13, 2010
UK: Norfolk GM potato trial withstands blight
A trial plot of genetically-modified potatoes at Norfolk's John Innes Centre has withstood five days of intense late-blight infection.
Thursday, August 26, 2010
Scientific News
Ancestors of Land Plants Were Wired to Make the Leap to Shore
When the algal ancestor of modern land plants made the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.
Photosynthesis Gene Could Help Crops Grow in Adverse Conditions
A gene that helps plants to remain healthy during times of stress has been identified by researchers at Oxford University.
Pancreatic Cancer Stem Cells Could be "Suffocated" by Anti-diabetic Drug
A new study shows that pancreatic cancer stem cells (PancSCs) are virtually addicted to oxygen-based metabolism, and could be “suffocated” with a drug already used to treat diabetes.
Scientists Learn How to Predict Plant Size
VIB and UGent scientists have developed a new method which allows them to predict the final size of a plant while it is still a seedling.
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Nanoporous Gold Sponge Makes Pathogen Detector
Sponge-like nanoporous gold could be key to new devices to detect disease-causing agents in humans and plants, according to UC Davis researchers.
Genetic Manipulation for Algal Biofuel Production
Studies of the genes involved in oil synthesis in microalgae allow scientists to use a gene promoter to increase algal production of triacylglycerols, which in turn enhances potential biofuel yields.
Phosphorous Fertilizer
UD researchers identify behaviors of nanoparticle that shows promise as nanofertilizer.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos