Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Unraveling Genetic Mysteries

Published: Tuesday, August 14, 2012
Last Updated: Tuesday, August 14, 2012
Bookmark and Share
A UC Berkeley researcher has been awarded $1.3 million of a $3.4 million shared grant to answer some basic scientific questions about inheritance in plants.

Damon Lisch, of the department of Plant and Microbial Biology in the College of Natural Resources, will use the money to continue his research on epigenetic changes in corn -- heritable and functionally relevant modifications to the genome that do not involve a change in the nucleotide sequence. Simply stated, Lisch is interested in changes that take place outside of DNA and that can be passed from parent to child (or in this case the next corn plant).

Exciting Field of Epigenetics

"Scientists love it when rules get broken, and epigenetics breaks a lot of the rules of inheritance, so this field has generated a lot of excitement," Lisch said. He will be carrying out the research with his team, composed of postdoctoral scholars and undergraduate students, near campus, in his lab, and at the Gill Tract in Albany, a field site for researchers affiliated with the College of Natural Resources.

The National Science Foundation grant, announced last week, will enable Lisch and colleagues at other universities to do basic research on epigenetics using maize (corn) as a model organism.

Maize provides an excellent model system for research due to the ease of performing genetic analyses, and the fact that it is a complex genome (an organism's complete set of DNA), and its transposable elements (transposable refers to a DNA sequence that can change its relative position, i.e., self-transpose, within the genome of a single cell).

Transmitting Change

Traditionally, scientists have thought that the inheritance of traits was entirely due to what happened in the DNA sequence, Lisch said.

"However, more recently, we have found that modifications of DNA, and changes in the proteins that DNA is associated with, can also be transmitted from parent to offspring. Unlike changes in DNA sequence, epigenetic changes can be unstable and can be altered by environmental conditions. Thus, experiences that we have may be passed on to our children and even their children because of changes in epigenetic states."

Lisch emphasized that this is important basic research. He is not "trying to make a better corn plant."
"Instead, we are using maize to help us to unravel some basic mysteries concerning the prevalence and importance of epigenetic changes in plants.  Our grant is designed to discover how much epigenetic variation is present in maize, what causes it, and what effects it has on the maize plant. 

With luck, that will tell us a great deal about how plants grow and how they respond to their environment. This is important information if we are to grow enough food for billions of additional people we will have in the next few decades."

"Basic research like this is important because all other research depends on it for fundamental information about how life works, which can have profound implications for more applied research," Lisch said.

To illustrate, Lisch points out that some of the modifications his group has described in corn are similar to those involved in the development of cancer cells and the genetic reprogramming that occurs in stem cells.  Another example is that farmers breed for various traits based on the assumption that they are selecting for particular DNA sequences, but they may also be selecting for epigenetic states that could change depending on environmental conditions.


"More generally, imagine if no one had been studying retroviruses as part of a basic research program before AIDs had come along, or no one had been looking deeply at changes in the climate?  Imagine a world without electronics, which depends on a deep understanding of physics," Lisch said.

The foundation of the grant Lisch received raises the possibility that a memory of environmental or genetic conditions can be encoded and propagated independent of changes in DNA sequence.

The role of epigenetic variation is poorly understood, which is another reason why the National Science Foundation funded the total $3.4 million grant. The grant is shared with:

•    Nathan Springer (Head Principal Investigator on the project) – University of Minnesota
•    Matt Vaughn - Texas Advanced Computing Center at University of Texas, Austin
•    Irina Makarevitch - Hamline University

The genomic datasets from the project will be available to the public and there is an educational component to the grant to provide training and outreach for high school, undergraduate and graduate students.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Faster, Better, Cheaper: a New Method to Generate Extended Data for Genome Assemblies
The Genome Analysis Centre have developed a new library construction method for genome sequencing that can simultaneously construct up to 12 size-selected long mate pair (LMP) or ‘jump’ libraries ranging in sizes from 1.7kb to 18kb with reduced DNA input, time and cost.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!