Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Differences in the genomes of related plant pathogens

Published: Monday, August 20, 2012
Last Updated: Monday, August 20, 2012
Bookmark and Share
Even in closely-related species, life-style moulds the genetic make-up of pathogens and how their genes are used

 Many crop plants worldwide are attacked by a group of fungi that numbers more than 680 different species. After initial invasion, they first grow stealthily inside living plant cells, but then switch to a highly destructive life-style, feeding on dead cells. While some species switch completely to host destruction, others maintain stealthy and destructive modes simultaneously. A team of scientists led by Richard O'Connell from the Max Planck Institute for Plant Breeding Research in Cologne and Lisa Vaillancourt from University of Kentucky in Lexington have investigated the genetic basis for these two strategies. The researchers found that pathogen life-style has moulded the composition of these fungal genomes and determines when particular genes are switched on. They also discovered surprising new functions for fungal infection organs.

Colletotrichum fungi cause rots and leaf spot diseases which are spread by wind and rain splash. They cause devastating economic losses on food and biofuel crops running into billions of euros each year. While some species attack many different plants, others are highly selective and attack just one host plant. The two species investigated by O'Connell and his colleagues differ in their life-style and their host specificity. One species preferentially attacks crucifers, including thale cress (Arabidopsis thaliana), a model plant important for biologists. Within just a few hours, this pathogen switches its metabolism towards the complete destruction of the plant cells. For this fungus, benign coexistence and massive destruction are separated in time. The other species studied is specifically adapted to maize. In one part of the plant it produces proteins to promote symptomless coexistence, while elsewhere it produces proteins to break-down and digest plant cells. In this case, the two life-styles are spatially separated.

The strength of this work, published in Nature Genetics, is that the researchers analysed both the genome and transcriptome of these two fungi. "The transcriptome reveals which genes are switched on and when. Several other fungal genomes have already been decoded, but never with such detailed information about if and when each gene is used during plant infection", says O'Connell. For example, both genomes have similar numbers of genes for hemicellulase enzymes, with which the plant cell wall is decomposed. However, the maize fungus switches on many more of these genes because the cell walls of maize contain more hemicellulose than do plants attacked by the Arabidopsis fungus. "This difference could not have been identified simply from cataloguing the numbers of such genes in the genome: transcriptome data are essential to obtain this information", explains O'Connell.



Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Powdery mildew at an evolutionary dead end
The plant pathogen powdery mildew forfeited a large part of its genetic complexity in the course of evolution. The considerable size of the mildew genome is largely due to so-called "jumping genes".
Friday, December 10, 2010
Scientific News
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Invasive Species Could Cause Billions in Agriculture Damages
Invasive insects and pathogens could be a multi-billion-dollar threat to global agriculture and developing countries may be the biggest target, according to a team of international researchers.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Scoliosis Linked to Disruptions in Spinal Fluid Flow
A new study in zebrafish suggests that irregular fluid flow through the spinal column brought on by gene mutations is linked to a type of scoliosis that can affect humans during adolescence.
More Research Needed to Ensure Gene Drive Safety
Gene-Drive modified organisms are not ready to be released into environment a new report calls for more research and robust assessment.
Genetic Basis of Petunia Variation Uncovered
A large international team of researchers, including scientists from Wageningen University, have now sequenced the entire genome of two different wild petunia species, and published this in the important scientific journal Nature Plants.
Genetically Engineered Crops Are Safe
Distinction between genetic engineering and conventional plant breeding becoming less clear, says new report on GE crops.
Breeding More Climate Resilient Brassicas
Scientists at the John Innes Centre have discovered how a gene that helps determine plant flowering time could help us breed better brassicas in the face of climate change.
One Step Closer To Developing Non-Allergenic 'Super' Peanuts
Scientists from The University of Western Australia have joined a global research team that have identified genes in peanuts that when altered will be able to prevent an allergic response in humans.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!