Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Salk discovery may help protect crops from stressors

Published: Thursday, September 06, 2012
Last Updated: Thursday, September 06, 2012
Bookmark and Share
Salk Institute findings of a key genetic mechanism in plant hormone signaling may help save crops from stress and help address human hunger. The findings may hold the key to manipulating plants' ethylene on/off switch, allowing them to balance between drought resistance and growth and, therefore, decrease crop losses from drought conditions.

 LA JOLLA, CA—Scientists at the Salk Institute for Biological Studies have discovered a key genetic switch by which plants control their response to ethylene gas, a natural plant hormone best known for its ability to ripen fruit, but which, under stress conditions, can cause wilted leaves, premature aging and spoilage from over-ripening. The findings, published August 30 in Science magazine, may hold the key to manipulating plants' ethylene on/off switch, allowing them to balance between drought resistance and growth and, therefore, decrease crop losses from drought conditions.

"In different stress conditions—flooding, drought, chilling, wounding or pathogen attack—ethylene tells plants to make adjustments to these adverse changes," says senior study author Joseph Ecker, a professor in Salk's Plant Molecular and Cellular Biology Laboratory and Howard Hughes Medical Institute-Gordon and Betty Moore Foundation investigator. "Our study discovered a key step in how plants 'smell' ethylene gas, which may lead to better ways to control these processes in crop plants."

This image of plant cells shows EIN2 (red), a protein that allows plants to control their response to ethylene gas, concentrated in the plant's nucleus (ringed in blue). Salk scientists discovered how EIN2 allows plants to respond to ethylene, which is crucial in fruit ripening and their response to stress.

Image: Courtesy of Hong Qiao, Salk Insitute for Biological Studies

Plants sense—or smell—ethylene, which triggers a cascade of events in their cells. Ethylene sensors in the cells send a signal to the nucleus, the cells' central DNA-containing compartment, which initiates genetic programs so the plant can make changes according to the conditions it faces. Scientists, including Ecker and his team, have identified the functions of a number of key regulators in the ethylene signaling pathway, including the protein EIN2 (ethylene insensitive 2).


The EIN2 protein is located in the endoplasmic reticulum, the part of the cell that facilitates the transport of proteins within the cell, and plays an essential role in ethylene signaling. The protein's function, however, remains enigmatic. Through a variety of sophisticated tests, Ecker's team uncovered a mechanism by which EIN2 protein processing in the endoplasmic reticulum and movement of signaling molecules into the nucleus are required to activate the ethylene response.


Understanding the mechanism may lead to new methods to help plants thrive in tough conditions. Stress conditions trigger various negative responses in plants, including wilted and rolled leaves, premature leaf senescence (aging), reduced photosynthetic efficiency, loss of chlorophyll, poor pollination, and flower, fruit and seed loss.



The most severe drought in 25 years is impacting crops across the United States, with the potential to wipe out farmers' incomes and raise food prices. Plant researchers are studying stress conditions in order to improve crop production, which has become more urgent as farmers around the world face climate issues such as drought and extreme temperatures. Curbing crops' susceptibility to certain stressors could allow for higher yields during droughts and possibly allow drier climates to support profitable crops and feed the world's growing population.

"Growers can opt to spray their plants with an ethylene inhibitor," says Hong Qiao, a postdoctoral researcher in Ecker's laboratory and first author of the paper. "This blocks the plant's ethylene receptors from smelling ethylene, which has an effect on growth. Without the ethylene response pathway, a tomato would never ripen. Too much ethylene, and the tomato over-ripens. Therefore, basic knowledge of the precise mechanism by which plants control the response to ethylene gas will lead to better ways to control these processes in crop plants."

Other researches on the study were Shao-shan Carol Huang, Robert J. Schmitz and Mark A. Urich, from the Salk Institute; and Zhouxin Shen and Steven P. Briggs of the University of California, San Diego.

The work was supported by grants from the National Science Foundation, the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
Pathogen Takes Control of Gypsy Moth Populations
A new fungal pathogen is killing gypsy moth caterpillars and crowding out communities of pathogens and parasites that previously destroyed these moth pests.
Super Wheat Brought Closer to Reality
Scientists at the John Innes Centre (JIC) and The Sainsbury Laboratory (TSL) have pioneered a new gene-detecting technology which, if deployed correctly could lead to the creation of a new elite variety of wheat with durable resistance to disease.
Mechanism Behind Plant Withering Clarified
Reproducing the reaction in which harmful reactive oxygen species are created during plant photosynthesis allows researchers to confirm the mechanism behind plant withering.
Sequencing the Salmon Genome
Researchers have established a “human” quality sequence of the Atlantic salmon genome that is now available online.
Improved Path to Cassava Production
Researchers have studied the genetic diversity of cassava, highlighting strategies to improve breeding programmes.
New Online Tool Helps Predict Gene Expression in Plants
Scientists at The Genome Analysis Centre (TGAC) and The John Innes Centre have developed a free online tool that will help a global community of scientists understand more about important food crops.
Rare DNA Transfer Between Animals, Plants
Scientists identify rare DNA transfer between conifers and insects.
A Love Potion for Plant Fertilization
A group of scientists at Nagoya University has succeeded in discovering AMOR, a sugar chain molecule that increases the fertilization efficiency in plants.
How The Bat Got Its Wings
Finding may provide clues to human limb development and malformations.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!