Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Why do hybrid crop varieties perform so much better than parental lines?

Published: Wednesday, September 12, 2012
Last Updated: Wednesday, September 12, 2012
Bookmark and Share
Chinese investigate the heterosis in rice

Genetic composition of yield heterosis in an elite rice hybrid

Gang Zhou, Ying Chen, Wen Yao, Chengjun Zhang, Weibo Xie, Jinping Hua1, Yongzhong Xing, Jinghua Xiao, and Qifa Zhang2

+ Author Affiliations


National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China

Contributed by Qifa Zhang, August 15, 2012 (sent for review June 23, 2012)

 Heterosis refers to the superior performance of hybrids relative to the parents. Utilization of heterosis has contributed tremendously to the increased productivity in many crops for decades. Although there have been a range of studies on various aspects of heterosis, the key to understanding the biological mechanisms of heterotic performance in crop hybrids is the genetic basis, much of which is still uncharacterized. In this study, we dissected the genetic composition of yield and yield component traits using data of replicated field trials of an “immortalized F2” population derived from an elite rice hybrid. On the basis of an ultrahigh-density SNP bin map constructed with population sequencing, we calculated single-locus and epistatic genetic effects in the whole genome and identified components pertaining to heterosis of the hybrid. The results showed that the relative contributions of the genetic components varied with traits. Overdominance/pseudo-overdominance is the most important contributor to heterosis of yield, number of grains per panicle, and grain weight. Dominance × dominance interaction is important for heterosis of tillers per plant and grain weight and has roles in yield and grain number. Single-locus dominance has relatively small contributions in all of the traits. The results suggest that cumulative effects of these components may adequately explain the genetic basis of heterosis in the hybrid.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Faster, Better, Cheaper: a New Method to Generate Extended Data for Genome Assemblies
The Genome Analysis Centre have developed a new library construction method for genome sequencing that can simultaneously construct up to 12 size-selected long mate pair (LMP) or ‘jump’ libraries ranging in sizes from 1.7kb to 18kb with reduced DNA input, time and cost.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!