Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Unlock Benefits of Barley Genome

Published: Friday, October 19, 2012
Last Updated: Friday, October 19, 2012
Bookmark and Share
Scientists have developed a high-resolution genomic resource for barley that they say will help produce higher yields, improve pest and disease resistance, and enhance the nutritional value of the grain.

Scientists Unlock Benefits of Barley Genome

UC Riverside research team helps develop a genomics resource to improve the crop’s yield and quality

By Iqbal Pittalwala On OCTOBER 17, 2012

 RIVERSIDE, Calif. — Scientists, including researchers at the University of California, Riverside, have developed a high-resolution genomic resource for barley that they say will help produce higher yields, improve pest and disease resistance, and enhance the nutritional value of the grain.

The resource gives new molecular and cellular insight into the biology of barley, one of the world’s most important and earliest domesticated cereal crops. It represents a hub for trait isolation, understanding and exploiting natural genetic diversity and investigating the unique biology and evolution of the crop.

“This resource will serve as an essential reference for genetic research and breeding and help advance gene discovery and genome-assisted crop improvement,” said Timothy Close, a professor of genetics at UC Riverside and one of the leaders of the research project.

Study results appear online today (Oct. 17) in the journal Nature.

In the research paper, the scientists provide a detailed overview of the functional portions of the barley genome, revealing the order and structure of most of its 32,000 genes. They also give a detailed analysis of where and when barley genes are switched on in different tissues and at different stages of development.

 The scientists also describe the location of dynamic regions of the barley genome that carry genes conferring resistance to devastating diseases, such as powdery mildew, Fusarium head blight and rusts. The result, they say, is a better understanding of the crop’s immune system and the genetic differences among barley cultivars.

Nearly twice as large as the human or maize genomes and about 12 times the size of the rice genome, the barley genome was a challenge to sequence due to its complexity and its large proportion of repetitive regions, which are difficult to piece together into a true linear order.

“The majority of the barley genome is composed of highly repetitive ‘junk’ DNA, which makes whole-genome sequencing difficult,” Close explained. “The UCR team first identified gene-rich segments of the genome, called BACs.  Then we determined the primary sequence of more than 2,000 of these BACs.”

The raw sequence data relevant to the new resource was generated in UCR’s Institute of Integrative Genome Biology core facility.

“For the purpose of determining the sequences of each BAC, we developed a novel protocol that takes advantage of recent advances in combinatorial pooling design and borrows ideas from error-correcting codes — like the ones used in CDs and DVDs,” said Stefano Lonardi, a professor of computer science and engineering at UCR, who worked closely with Close on the research.

A member of the grass family, barley is a high-fiber and high-protein grain and a widely adaptable crop. Approximately three-quarters of its global production is used for animal feed, 20 percent is malted for use in alcoholic and non-alcoholic beverages, and 5 percent as an ingredient in a range of food products.

The success of the barley genome sequencing and other grass family crops, such as wheat and rye, will allow breeders and scientists to effectively address the challenge of feeding the world’s burgeoning population under the constraints of an environment that increasingly challenges farmers and ranchers with extreme weather events.

Read more at http://ucrtoday.ucr.edu/9588


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!