We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Scientists Aim to Sustainably Outsmart 'Super Weeds'

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

These fast-growing "super weeds" -- resistant to the highly effective herbicide glyphosate -- are cutting crop yields and raising costs for farmers, whose only recourse is to spray more and different chemicals.

The issue, according to Matthew Ryan, assistant professor of crop and soil sciences, isn't going away; three new GR weed species have been documented since January, bringing the total to 24. To combat GR weeds, the agrichemical industry has developed new transgenic crops that are resistant to multiple herbicides. But Ryan and Thomas Bjorkman, associate professor of horticultural sciences, believe this is not a long-term solution.

"The industry's solution doesn't get at the problem of using a single tactic for weed management," said Ryan. "It's not just herbicides. Overusing any one method of weed management, even hand weeding, can create selection pressure on weeds to build resistance."

Just as the overuse of certain antibiotics led to resistant bacteria strains, "super weeds" emerged shortly after transgenic GR crops were introduced in 1996 and farmers began relying almost exclusively on glyphosate to control weeds in those crops. This is why Ryan and Bjorkman are investing instead in preventing the evolution and spread of GR weeds by using diverse integrated weed management (IWM) strategies.

"Prevention involves killing weeds with multiple modes of action, and preventing movement of any potentially resistant weeds from field to field, or from field margins into fields," Bjorkman said.
Integrated weed management includes tactics such as cover cropping, mechanical cultivation, mowing, mulching, crop rotation and targeted herbicide application. Ryan's research shows that using multiple IWM strategies is most effective for managing weeds. IWM strategies also help lower the selection pressure on weeds, preventing them from easily developing resistance.

But Ryan said prevention is a tough sell to farmers who aren't currently battling GR weeds. Bjorkman believes this is because most farmers' finances don't take into account the benefits of avoiding future uncontrollable weed infestations. Also, the industry has pushed their transgenic seed and herbicide development research toward simplicity.

"There are instructions on bottles of herbicides, but not on integrated weed management plans," said Ryan. "IWM can be economical and feasible, but we need more on-the-ground research and work with farmers."

To fill this gap, Ryan and Bjorkman are refining IWM techniques to make them easier for farmers to adapt to their locations and cropping schedules. Ryan is conducting cover crop seeding rate experiments on farms in New York, Massachusetts, Pennsylvania, Maryland and North Carolina. He is also leading a newly funded multistate project to research pre-harvest interseeding of cover crops in corn and soybean fields.

Bjorkman's cover crop research has fueled development of two online decision tools that help farmers narrow down to a small number myriad choices for cover-cropping by situation. Bjorkman designed one tool for New York vegetable farmers; the other, developed in conjunction with the Midwest Cover Crops Council, covers several states with an emphasis on field crops.