Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

$8.4 Million for Food Grain and Alternative Fuel Research

Published: Monday, November 12, 2012
Last Updated: Monday, November 12, 2012
Bookmark and Share
UC Davis plant scientist Eduardo Blumwald is reaching out to feed and fuel the world.

With his laboratory colleagues, Blumwald uses genetic engineering to improve the drought tolerance and efficiency of switchgrass, a native North American grass valued for its potential as a sustainable source of fuel, and to develop heat- and drought-tolerant varieties of pearl millet, a vitally important grain for India and Africa. Blumwald holds the Will W. Lester Chair in the UC Davis Department of Plant Sciences.

The U.S. Department of Energy recently awarded a five-year, $6.6 million grant to Blumwald and his collaborators at the U.S. Department of Agriculture to support his research into switchgrass, which has the advantages of being a high-yielding and adaptable perennial plant. Working with Blumwald on the project are John Vogel, Christian Tobias, and Roger Thilmony, all at the USDA Agricultural Research Service Western Regional Research Center in Albany, Calif.

Blumwald and his colleagues will use the grant to develop new molecular biology tools to accelerate switchgrass breeding. Via genetic engineering, the team also will introduce traits recently developed at UC Davis to rapidly increase both the plant’s drought tolerance and nutrient-use efficiency.
Because current switchgrass varieties are only a few generations removed from their undomesticated predecessors, scientists anticipate that there is considerable potential for improving the plant as an emerging energy crop.

In order to ensure that the crop yields more energy than it requires to produce and does not compete with food crops, switchgrass and all other crops grown specifically for biomass must be grown with minimal fertilizer and water on marginal lands unsuitable for producing food crops.

In the second project, funded by a $1.8 million, four-year grant from the U.S. Agency for International Development and matched by in-kind support from the industry partners, the Blumwald lab is using biotechnology tools to develop new varieties of pearl millet, a small-seeded grass that has been grown in Africa and India for thousands of years. The project is part of Feed the Future, the U.S. government’s global hunger and food security initiative. Led by USAID, Feed the Future leverages the strengths of U.S. agencies and works with partners to address poverty and undernutrition around the world.

Pearl millet is an important grain crop because it will tolerate poor soils as well as heat and drought — conditions that are badly suited for growing other grain crops like corn and wheat. As millet increases in value as both a food and feed crop, there is a greater need to enhance its tolerance to heat and drought so that it will produce stable yields even in marginal environments. This is especially important for impoverished regions of Africa and India.

UC Davis is collaborating on the pearl millet project with an international consortium of researchers, including scientists at Arcadia Biosciences, headquartered in Davis; the nonprofit International Crops Research Institute for the Semi-Arid Tropics, headquartered near Hyderabad, India; and Krishidhan Seeds, also of India. The goal of the partnership is to develop indigenous drought-tolerant pearl millet varieties that will help farmers in India and Africa deal with harsh environmental conditions and open the doors for higher-yielding millet crops.

UC Davis’ role in the partnership will be to identify metabolic and genetic pathways for plant-stress tolerance, and to introduce genes and gene combinations that have been shown to play key roles in conferring to new varieties resistance to drought, heat and salinity.

Arcadia Biosciences and Krishidhan Seeds will make the technology available and support commercialization through private and public partners.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genome Sequencing May Help Avert Banana Armageddon
Researchers at the University of California, Davis, and in the Netherlands have discovered how three fungal diseases have evolved into a lethal threat to the world’s bananas.
Friday, August 12, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Sustaining Our Salad
Improving lettuce crops is the aim of a new, $4.5 million grant, awarded to University of California, Davis, researchers by the U.S. Department of Agriculture's National Institute of Food and Agriculture.
Thursday, October 15, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
International Fruit Pest Targeted by Genomic Research
The spotted wing drosophila is itself being targeted, thanks to groundbreaking genome sequencing.
Friday, December 06, 2013
DNA Sequencing Lifts Veil on Wine’s Microbial Terroir
It’s widely accepted that terroir — the unique blend of a vineyard’s soils, water and climate — sculpts the flavor and quality of wine.
Wednesday, November 27, 2013
Grapevine Virus Screening Saves Napa-Sonoma $60M
Providing disease-free grapevines and rootstock to California’s famed North Coast wine region is money-wise to the tune of more than $60 million annually.
Tuesday, November 19, 2013
New Cattle Virus Identified by Genome Sequencing
A new cow virus that causes neurologic symptoms reminiscent of mad cow disease has been identified and its genome sequenced by a team of researchers.
Thursday, August 15, 2013
More Accurate Model of Climate Change’s Effect on Soil
Scientists have developed a new computer model to measure global warming's effect in soil worldwide that accounts for how bacteria and fungi in soil control carbon.
Friday, August 02, 2013
Predicting how Insects, Plants Interact
Butterfly and moth larvae feeding on native plants will extend their diet to newly introduced non-native plants, but which ones?
Tuesday, July 23, 2013
Gene Discovery May Halt Disease that Threatens Wheat
Researchers have identified a gene that enables resistance to a new race, or strain, of stem rust, a disease threatening global food security.
Monday, July 01, 2013
Scientific News
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
New Discovery May Benefit Farmers Worldwide
Scientists have shown how a crop-microbe 'team' protect against fungal infection.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Antibiotic Resistance Can Occur Naturally in Soil Bacteria
Scientists have found natural anti-biotic resistant bacteria in soils with little to no human exposure.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Breakthrough in Plant Salt-Tolerance Research
Researchers have made a breakthrough in plant salt tolerance that could lead to new salt tollerant crop types.
Microbes Help Plants Survive In Severe Drought
Researchers discover plants survive better under drought conditions with help from natural microbes.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!