Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Look to Hawaii’s Bugs for Clues to Origins of Biodiversity

Published: Thursday, November 22, 2012
Last Updated: Thursday, November 22, 2012
Bookmark and Share
To Rosemary Gillespie, the Hawaiian Islands are a unique and ongoing series of evolutionary and ecological experiments. As each volcano rises above the waves, it is colonized by life from neighboring volcanoes and develops its own flora and fauna.

A new $2 million grant from the National Science Foundation (NSF) to the University of California, Berkeley, will allow Gillespie and her colleagues to focus on the islands’ insect and spider life in search of clues to how animals explore and settle into new niches, leading to increasing biodiversity over time.

“One of the most puzzling features of the high diversity of species on remote islands is that these species almost certainly arose from one or very few colonizers,” said Gillespie, director of UC Berkeley’s Essig Museum of Entomology. “How was variability regained after such genetic bottlenecks, and how did it give rise to ecological diversity?”

Their findings will answer questions not only about how communities have come together over the 700,000-year-lifespan of the Big Island, but also about the impacts of biological invasions. And, as the Hawaiian ecosystem adapts to a changing climate and a growing human population, the research will help develop successful conservation management practices and more effective programs in restoration ecology.

The grant is one of 14 totaling $26.4 million announced this fall by NSF’s Dimensions of Biodiversity program. It ties into the Berkeley Initiative on Global Change Biology (BiGCB), which looks at how biodiversity has responded in the past to environmental change in order to improve models for predicting the consequences of future environmental change.

“The islands of Hawaii are a great system for exploring how biodiversity changes in response to ecological change because it provides a chronological sequence of habitats from 0 to 1 million years ago on the Big Island, and further back in time as we go on to the older islands,” said Gillespie, co-director of BiGCB and professor of environmental science, policy and management. “The basic question is, ‘How do you go from an empty habitat on a newly emerged island to a complex mixture of populations like we see on the Big Island of Hawaii, where things are just starting, to a fairly discrete set of species like we see on Maui?’”

Colonizing volcanoes on the Big Island

The new study will focus initially on the five volcanoes that make up the island of Hawaii, which insects and spiders colonized during the past 1 million years. Gillespie and her colleagues expect to find a range of environments: from settled species in defined niches on the island of Maui, to discrete populations on Kohala, Hualalai and Mauna Kea, the oldest volcanoes of the youngest island, to muddled and still-evolving species on the youngest volcanoes, Mauna Loa and the still-erupting Kiluaea.

The researchers will collect DNA in search of genetic markers that will allow them to see how specific species and populations have adapted on volcanoes of different ages. The researchers will examine how species are continuing to adapt to an environment that experiences ongoing change – from new lava flows and landslides, for example — and settle into defined and recognizable species.

They hope to find out how quickly animals diverge in these new environments, and also whether the structure of the communities changes in a predictable way over time. This latter component makes use of a sophisticated ecological theory that looks at whether properties of communities are predictable.

“We are trying to see which animals get there first — something that eats plants or animals, dead or alive, for example — and whether the pattern of arrival and the community thus formed is predictable,” Gillespie said. “Then we can see how the community of organisms thus assembled might allow its members to diversify.”

In this way, Gillespie and her colleagues will be able to see how the interaction between the different parts of a community — such as predators, herbivores and parasites — are dictating divergence between populations and subsequent speciation.

UC Berkeley co-principal investigators are John Harte, professor of energy and resources, who will test theoretical models in ecology describing the numbers and types of animals in a given habitat; Patrick O’Grady, associate professor of environmental science, policy, & management and an expert on Drosophila flies; Rasmus Nielsen, professor of integrative biology, who will use molecular tools to look at how populations have expanded, contracted, diverged or otherwise changed over the lifetime of the island; and Neo Martinez, an affiliate of the energy and resources group, who will use new theoretical tools to explore how interactions between species change as a community develops.

Collaborators include evolutionary biologists Kerry Shaw at Cornell University, Diana Percy at the British Museum in London and Donald Price at the University of Hawaii in Hilo; and community ecologist Daniel Gruner of the University of Maryland, College Park.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genome Sequencing May Help Avert Banana Armageddon
Researchers at the University of California, Davis, and in the Netherlands have discovered how three fungal diseases have evolved into a lethal threat to the world’s bananas.
Friday, August 12, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Sustaining Our Salad
Improving lettuce crops is the aim of a new, $4.5 million grant, awarded to University of California, Davis, researchers by the U.S. Department of Agriculture's National Institute of Food and Agriculture.
Thursday, October 15, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
International Fruit Pest Targeted by Genomic Research
The spotted wing drosophila is itself being targeted, thanks to groundbreaking genome sequencing.
Friday, December 06, 2013
DNA Sequencing Lifts Veil on Wine’s Microbial Terroir
It’s widely accepted that terroir — the unique blend of a vineyard’s soils, water and climate — sculpts the flavor and quality of wine.
Wednesday, November 27, 2013
Grapevine Virus Screening Saves Napa-Sonoma $60M
Providing disease-free grapevines and rootstock to California’s famed North Coast wine region is money-wise to the tune of more than $60 million annually.
Tuesday, November 19, 2013
New Cattle Virus Identified by Genome Sequencing
A new cow virus that causes neurologic symptoms reminiscent of mad cow disease has been identified and its genome sequenced by a team of researchers.
Thursday, August 15, 2013
More Accurate Model of Climate Change’s Effect on Soil
Scientists have developed a new computer model to measure global warming's effect in soil worldwide that accounts for how bacteria and fungi in soil control carbon.
Friday, August 02, 2013
Predicting how Insects, Plants Interact
Butterfly and moth larvae feeding on native plants will extend their diet to newly introduced non-native plants, but which ones?
Tuesday, July 23, 2013
Gene Discovery May Halt Disease that Threatens Wheat
Researchers have identified a gene that enables resistance to a new race, or strain, of stem rust, a disease threatening global food security.
Monday, July 01, 2013
Scientific News
Plant Analysis – Identifying Metabolites
New plant analysis method shows biologically active plant substances are far more common than previously thought.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Biologists Discover Origin of Stomata
Researchers discover genetic mechanism similar in flowering plants and mosses is a result of evolutionary conservation.
Uncovering a World of Viruses
Study that shows human diseases like influenza are derived from those present in invertebrates.
Engineering Bacteria to Aid Ethanol
Splicing in genes for ethanol production into bacteria in order to produce ethanol rather than not lactic acid.
Controlling Cell Division in Plants
Researchers succeeded in developing a new compound, a triarylmethane, that can rapidly inhibit cell division in plants.
Plant Aging Study Produces Insights into Crop Yields
New insights into the mechanism behind how plants age may help scientists better understand crop yields and nutrient allocation.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!