Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Many Microorganisms have Ability to Combat Nitrous Oxide

Published: Friday, November 23, 2012
Last Updated: Friday, November 23, 2012
Bookmark and Share
University of Tennessee study shows unexpected microbes fighting harmful greenhouse gas.

The environment has a more formidable opponent than carbon dioxide. Another greenhouse gas, nitrous oxide, is 300 times more potent and also destroys the ozone layer each time it is released into the atmosphere through agricultural practices, sewage treatment, and fossil fuel combustion.

Luckily, nature has a larger army than previously thought combating this greenhouse gas—according to a study by Frank Loeffler, University of Tennessee, Knoxville–Oak Ridge National Laboratory Governor’s Chair for Microbiology, and his colleagues.

The findings are published in the November 12 edition of the Proceedings of the National Academy of Sciences.

Scientists have long known about naturally occurring microorganisms called denitrifiers, which fight nitrous oxide by transforming it into harmless nitrogen gas. Loeffler and his team have now discovered that this ability also exists in many other groups of microorganisms, all of which consume nitrous oxide and potentially mitigate emissions.

The research team screened available microbial genomes encoding the enzyme systems that catalyze the reduction of the nitrous oxide to harmless nitrogen gas.

They discovered an unexpected broad distribution of this class of enzymes across different groups of microbes with the power to transform nitrous oxide to innocuous nitrogen gas. Within these groups, the enzymes were related yet evolutionarily distinct from those of the known denitrifiers. Microbes with this capability can be found in most, if not all, soils and sediments, indicating that a much larger microbial army contributes to nitrous oxide consumption.

“Before we did this study, there was an inconsistency in nitrous oxide emission predictions based on the known processes contributing to nitrous oxide consumption, suggesting the existence of an unaccounted nitrous oxide sink,” said Loeffler. “The new findings potentially reconcile this discrepancy.”

According to Loeffler, the discovery of this microbial diversity and its contributions to nitrous oxide consumption will allow the scientific community to advance its understanding of the ecological controls on global nitrous oxide emissions and to refine greenhouse gas cycle models.

“This will allow us to better describe and predict the consequences of human activities on ozone layer destruction and global warming,” said Loeffler. “Our results imply that the analysis of the typical denitrifier populations provides an incomplete picture and is insufficient to account for or accurately predict the true nitrous oxide emissions.”

Loeffler collaborated with researchers from the University of Illinois in Urbana-Champaign; the Georgia Institute of Technology; the US Department of Agriculture in Urbana, Ill.; the University of Puerto Rico; and the National Institute of Abiotic Stress Management in Pune, India.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Glowing Crops Could Minimise Pesticide Use
Farmers may one day be able to target pesticides to only those parts of their fields that are at risk of disease simply by noting which ones are glowing
Monday, July 12, 2010
Scientific News
New Method Promises to Speed Development of Food Crops
A new study addresses a central challenge of transgenic plant development: how to reliably evaluate whether genetic material has been successfully introduced.
Where Cancer Cells May Begin
Scientists use fruit fly genetics to understand how things could go wrong in cancer.
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Bacteria Attack Lignin with Enzymatic Tag Team
Team from Rice, University of Wisconsin-Madison shows how nature handles lignin.
Milestone Resource in Wheat Research Now Available for Download
Leading on from The Genome Analysis Centre’s (TGAC) previous announcement of their new bread wheat genome assembly, the landmark resource is now publically available to download at the European Bioinformatics Institute’s (EMBL-EBI) Ensembl database for full analysis.
Nano-Reactor for the Production of Hydrogen Biofuel
Combining bacterial genes and virus shell creates a highly efficient, renewable material used in generating power from water.
Cleaning Wastewater with Pond Scum
A blob of algae scooped from a fountain on South Street almost two years ago, has seeded a crop of the green stuff that Drexel University researchers claim is more effective at treating wastewater than many of the processes employed in municipal facilities today.
Global Reductions in Mercury Emissions Should Lead to Billions in Economic Benefits for U.S.
Benefits from international regulations may double those of domestic policy.
A Worm with Five Faces
Max Planck scientists discover new roundworm species on Réunion.
A Gene for New Species is Identified
A University of Utah-led study identified a long-sought “hybrid inviability gene” responsible for dead or infertile offspring when two species of fruit flies mate with each other.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!