Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researcher Part of International Pig Genome Sequencing

Published: Friday, December 07, 2012
Last Updated: Friday, December 07, 2012
Bookmark and Share
An animal scientist in Penn State's College of Agricultural Sciences played a role in the first complete sequencing of the pig genome by an international team of researchers.

The study, conducted by the International Swine Genome Sequencing Consortium, provides a genetic comparison of the domesticated pig and its wild cousins.

The research, described in the cover article of the Nov. 15 issue of the journal Nature, offers clues about how the animal evolved. The article is available at http://psu.ag/SHjXHu.

Wansheng Liu, associate professor of animal genomics in the Department of Animal Science, participated in the study, which includes comparisons of the human, mouse, dog, horse, cow and pig genomes.

Funded mostly by the U.S. Department of Agriculture and the National Pork Board, the study promises to expand the usefulness of the pig model in human health and biomedical research, according to Liu.

"The project found variants in 112 genes in the pig genome that were identical to variants implicated in human diseases, including aberrations associated with obesity, diabetes, dyslexia, Parkinson's disease and Alzheimer's disease," he said.

"The sequencing of the pig genome represents a remarkable international initiative involving many universities and research centers worldwide."

Liu and his team at Penn State were involved in the construction of a high-resolution gene map with about 10,000 DNA markers. This map serves as a "scaffold" for pig genome sequence assembly and gene annotation, he noted.

The genome of the common farm pig was compared to the genetic makeup of 10 wild boars from locations in Europe and Asia. The genetic evidence found that the pig emerged in Southeast Asia and expanded into Europe before starting to become domesticated about 10,000 years ago.

"This project is a milestone in a long process that started with man's domestication of the pig to produce food," Liu said. "It offers new opportunities for animal geneticists to understand what genes do and what traits of economic importance they control to improve food production."

The comparison with other mammals' genomes found a rapid evolution of genes in the pig associated with immune response and the sense of smell. Pigs and rats have the greatest number of functional olfactory receptor genes possessed by any species, reflecting the importance of smell in a scavenging animal.

"The pig genome sequence provided us the tools to demonstrate that genes in the pig immune system are more similar to those in the human, in comparison with the genes found in the cow or mouse genomes," Liu explained.

"Researchers now have a genetic blueprint with which to integrate information on nutrition, reproduction, meat science, growth and development, and basic biology, which will benefit both production agriculture and biomedical research," he said.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Faster, Better, Cheaper: a New Method to Generate Extended Data for Genome Assemblies
The Genome Analysis Centre have developed a new library construction method for genome sequencing that can simultaneously construct up to 12 size-selected long mate pair (LMP) or ‘jump’ libraries ranging in sizes from 1.7kb to 18kb with reduced DNA input, time and cost.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!