Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Can genomics boost productivity of orphan crops?

Published: Friday, December 07, 2012
Last Updated: Friday, December 07, 2012
Bookmark and Share
Rajeev K Varshney and colleagues published a letter in the recent issue of Nature Biotechnology aruging that genomics can be effective in enhancing the yield of tropical food crops

 Nature Biotechnology 30, 1172–1176 (2012) doi:10.1038/nbt.2440 ; 07 December 2012

Advances in genomics over the past 20 years have enhanced the precision and efficiency of breeding programs1 in many temperate cereal crops2, 3. One of the first applications of genomics-assisted breeding has been the introgression of loci for resistance to biotic stresses or major quantitative trait loci (QTLs) for tolerance to abiotic stresses into elite genotypes through marker-assisted backcrossing (MABC)4. For instance, introgression of a major QTL for submergence tolerance (Sub1) into widely grown rice varieties has substantially improved yield in >15 million hectares of rain-fed low-land rice in South and Southeast Asia5. Despite this success story, the overall adoption of genomics-assisted breeding in developing countries is still limited especially for complex traits like yield under environmental stress in several other crops6, 7.

Although maize, rice and wheat dominate global food production, several other crops are of great importance for some communities in developing countries (Supplementary Table 1). This group includes sorghum and millets, groundnut, cowpea, common bean, chickpea, pigeonpea, cassava, yam and sweet potato (Table 1). As they are not extensively traded and receive little attention from researchers compared to the main crops, these important crops for marginal environments of Africa, Asia and South America are often referred to as 'orphan crops'. Breeding for orphan crops is lagging behind major crops although they are key staple crops in many low-income countries where small-holder farmers cannot afford to buy improved seed. The magnitude of the breeding effort for those orphan crops and the capacity of adopting modern technologies is extremely variable across developing countries and generally directly related to the health of the national economy.

(read on.... http://www.nature.com/nbt/journal/v30/n12/full/nbt.2440.html?WT.ec_id=NBT-201212)


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Peachy Defense System for Seeds
ETH chemists are developing a new coating method to protect seeds from being eaten by insects. In doing so, they have drawn inspiration from the humble peach and a few of its peers.
Roundup Impacts Gene Expression
Study published on the impact of low-dose toxicity of Roundup weed-killer on gene expression profiles.
Meaningful Part of Maize Genome Defined
FSU-Cornell team show that a small percentage of the maize genome is responsible for 40 percent of a plant’s trait diversity.
Plant Stem Cell Discovery Points to Increased Yields
Braking signals from the leaves tell stem cells to stop proliferating.
Plasma Dose Improves Agricultural Crop Harvests
Researchers at Japan have developed a technique to improve crop yields by treating seeds prior to planting with a safe dose of plasma radiation.
TGAC Installs Largest SGI UV 300 Supercomputer for Life Sciences
The Genome Analysis Centre (TGAC) partners with Global HPC hardware giant SGI to address the most complex problems in genomics analysis.
Carrot Genome Uncovered
Carrot genome paints picture of domestication, could help improve crops.
Flowering Regulation Mechanism Discovered
Monash researchers have discovered a new mechanism that enables plants to regulate their flowering in response to raised temperatures.
Nanoparticles Present Sustainable Way to Grow Food Crops
Nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!