Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Biologists Unlocking the Secrets of Plant Defenses, One Piece at a Time

Published: Thursday, December 13, 2012
Last Updated: Thursday, December 13, 2012
Bookmark and Share
Researchers examining how the hormone jasmonate works to protect plants and promote their growth have revealed how a transcriptional repressor of the jasmonate signaling pathway makes its way into the nucleus of the plant cell.

They hope the recently published discovery will eventually help farmers experience better crop yields with less use of potentially harmful chemicals.

“This is a small piece of a bigger picture, but it is a very important piece,” said Maeli Melotto, a University of Texas at Arlington assistant professor of biology.

Melotto recently co-authored a paper that advances current understanding of plant defense mechanisms with her collaborator Sheng Yang He and his team at Michigan State University’s Department of Energy Plant Research Laboratory (DOE-PRL). He is a Howard Hughes Medical Institute-Gordon and Betty Moore Foundation investigator. A paper on the collaboration was published online Nov. 19 in the Proceedings of the National Academy of Sciences under the title, “Transcription factor-dependent nuclear import of transcriptional repressor in jasmonate hormone signaling.”

Jasmonate signaling has been a target of intense research because of its important role in maintaining the balance between plant growth and defense. In healthy plants, jasmonates play a role in reproductive development and growth responses. But, when stressors such as herbivorous insects, pathogen attack, or drought, jasmonate signaling shifts to defense-related cellular processes.

The team from UT Arlington and Michigan State focused on the role of jasmonate signaling repressors referred to as JAZ. Specifically, they looked at how JAZ interacts with a major transcription factor called MYC2 and a protein called COI1, which is a receptor necessary for jasmonate signaling.

The researchers discovered that a physical interaction between the repressors and the MYC2 persisted inside the plant cell nucleus, preventing jasmonate-associated gene transcription.

“This tight repression of transcription factors may be important because activation of jasmonate signaling, although important for plant defense against pathogens and insects, is energy-consuming and could lead to growth inhibition – a widely known phenomenon called growth-defense tradeoff,” said He, the Michigan State plant biologist. “In other words, plants have developed a mechanism to tightly repress presumably energy-consuming, jasmonate-mediated defense responses until it becomes necessary, such as upon pathogen and insect attacks.”

The National Institutes of Health, the U.S. Department of Energy, Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation funded the work featured in the recent paper.

Melotto said understanding jasmonate signaling at the molecular level is also vital because some plant pathogens, such as Pseudomonas syringae, have developed ways to mimic the hormone’s action in the cell. This gives them the ability to aggressively colonize plants without activating natural defense mechanisms, she said.

Melotto, who is currently receiving National Institutes of Health funding to examine plant defenses, said the next step in her jasmonate research is to determine which domain of the JAZ protein is responsible for plant innate immunity.

“This is one way to have sustainable agriculture,” Melotto said of the research. “By increasing genetic resistance we could reduce the use of pesticides, decrease crop production costs and promote environmentally friendly farming practices.”

Melotto’s work with Michigan State University is an example of the collaborative research going on at UT Arlington, a comprehensive research institution of more than 33,200 students and more than 2,200 faculty members in the heart of North Texas.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Seed Size is Controlled by Maternally Produced Small RNAs, Scientists Find
Seed size is controlled by maternally produced small RNAs, scientists find.
Thursday, April 12, 2012
Scientific News
New Method Promises to Speed Development of Food Crops
A new study addresses a central challenge of transgenic plant development: how to reliably evaluate whether genetic material has been successfully introduced.
Where Cancer Cells May Begin
Scientists use fruit fly genetics to understand how things could go wrong in cancer.
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Bacteria Attack Lignin with Enzymatic Tag Team
Team from Rice, University of Wisconsin-Madison shows how nature handles lignin.
Milestone Resource in Wheat Research Now Available for Download
Leading on from The Genome Analysis Centre’s (TGAC) previous announcement of their new bread wheat genome assembly, the landmark resource is now publically available to download at the European Bioinformatics Institute’s (EMBL-EBI) Ensembl database for full analysis.
Nano-Reactor for the Production of Hydrogen Biofuel
Combining bacterial genes and virus shell creates a highly efficient, renewable material used in generating power from water.
Cleaning Wastewater with Pond Scum
A blob of algae scooped from a fountain on South Street almost two years ago, has seeded a crop of the green stuff that Drexel University researchers claim is more effective at treating wastewater than many of the processes employed in municipal facilities today.
Global Reductions in Mercury Emissions Should Lead to Billions in Economic Benefits for U.S.
Benefits from international regulations may double those of domestic policy.
A Worm with Five Faces
Max Planck scientists discover new roundworm species on Réunion.
A Gene for New Species is Identified
A University of Utah-led study identified a long-sought “hybrid inviability gene” responsible for dead or infertile offspring when two species of fruit flies mate with each other.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!