Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Rare Form of Active 'Jumping Genes' Found In Mammals

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
Johns Hopkins researchers report they have identified a new DNA sequence moving around in bats.

Much of the DNA that makes up our genomes can be traced back to strange rogue sequences known as transposable elements, or jumping genes, which are largely idle in mammals. But Johns Hopkins researchers report they have identified a new DNA sequence moving around in bats — the first member of its class found to be active in mammals. The discovery, described in a report published in December on the website of the Proceedings of the National Academy of Sciences, offers a new means of studying evolution, and may help in developing tools for gene therapy, the research team says.

“Transposable elements are virtually everywhere in nature, from bacteria to humans,” says Nancy Craig, Ph.D., a Howard Hughes investigator and professor in the Johns Hopkins University School of Medicine’s Department of Molecular Biology and Genetics. “They’re often seen as parasites, replicating themselves and passing from generation to generation without doing anything for their hosts. But in fact they play an important role in fueling adaptation and evolution by adding variability to the genome.”

As their name suggests, jumping genes can move from place to place in the genome, sometimes even inserting themselves into the middle of another gene. Some work by replicating themselves and inserting the copies into new places in the genome — retroviruses such as HIV are comprised of this type of jumping gene, which enables the host cell to be hijacked to make more virus particles. Another class of jumping genes, known as “DNA cut-and-paste,” doesn’t make copies, but instead cuts itself out of one site in the genome before hopping into another. Craig explains that in mammal genomes, most jumping genes are of the copy-and-paste variety, and most of these are fossils, mutated to the point where they can no longer move about. Although some remnants of cut-and-paste jumping genes have been unearthed in mammals, until now, all of them have been inactive.

Craig’s team made its discovery while studying piggyBac, an active cut-and-paste jumping gene from insects. PiggyBac got its name because it hitched a ride from one host to another on a virus. While studying how the jumping gene works, the researchers also used computational methods to search for piggyBac-like DNA sequences in the genomes of some species, including that of the little brown bat. There they found a sequence similar to piggyBac, one that didn’t appear to have collected mutations that would make it inactive. Sure enough, near-identical copies were sprinkled throughout the genome, indicating that the sequence had jumped relatively recently. Craig named the find piggyBat. Her team also found that piggyBat can move within bat cells, other mammalian cells and yeast, showing that it is indeed a still-active DNA element.

Many organisms have developed systems to decrease the frequency at which jumping genes move, Craig says. Such systems are a component of immunity, protecting mammals from retroviruses, as well as from the risk that jumping genes will wreak havoc by interrupting an important gene.

Over time, the protective systems have made most mammalian jumping genes inactive. The finding that a bat species is host to an exception, combined with the fact that bats are particularly susceptible to viruses, may indicate that the systems that protect us from dangerous genetic material are not as well-developed in bats, Craig says. But whatever the reason for its presence, piggyBat “opens up a window for studying jumping gene regulation in a mammal where the element is still active,” she says.

This future research should yield insights on the workings of jumping genes themselves, as well as on the protective systems that keep them in check, Craig says. Ultimately, her group hopes to custom-design jumping genes that can be used for targeted, safe and effective gene therapy, delivering genes needed to treat disease.

Other authors on the paper are Rupak Mitra, Ph.D., and Xianghong Lia, Ph.D., of the Johns Hopkins University School of Medicine; Aurélie Kapusta, Ph.D., and Cédric Feschotte, Ph.D., of the University of Utah School of Medicine; and David Mayhew and Robi D. Mitra, Ph.D., of the Washington University School of Medicine in St. Louis.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Accelerating Forage Breeding to Boost Livestock Productivity
International expert skill-sets in genomics and bioinformatics enhance our capacity to breed improved forages for Africa.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
So Long, Snout
Research helps answer how birds got their beaks.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Algae Nutrient Recycling is a Triple Win
Sandia method cheaper, greener and cuts competition for fertilizer.
Non-Transgenic Rapeseed Product Launched For Chinese Market
Cibus and Rotam have announced a new agreement to cooperate in the development of herbicide-tolerant rapeseed in China.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
BESC Creates Microbe That Bolsters Isobutanol Production
Another barrier to commercially viable biofuels from sources other than corn has fallen with the engineering of a microbe that improves isobutanol yields by a factor of 10.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!