Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Powerful Enzymes Create Ethanol from Agricultural Harvest Waste

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
The mainly EU-funded DISCO project coordinated by VTT Technical Research Centre of Finland has developed powerful enzymes, which accelerate plant biomass conversion into sugars and further into products such as bioethanol.

The project's results include lignin-tolerant enzymes and enzyme cocktails for processing spruce, straw, corn cob and wheat bran. The commercialisation of these enzymes has now begun in the Netherlands.

The EU's DISCO project developed powerful enzymes and enzyme cocktails suitable for various raw materials, with the purpose of converting agricultural side streams into fermentable sugars and further into products such as bioethanol. Plant biomass was chosen as the raw material for the project, since it contains lignocellulosic biomass, which is an abundant raw material.

The commercialisation process of the second-generation bioethanol industry, which uses lignocellulosic biomass instead of starch, has reached critical momentum: there are a total of 15 plants being constructed in Europe, the Americas and Asia. Lignocellulosic biomass use will substantially expand the market for industrial enzymes. The total industrial enzyme market is currently worth approximately 2.7 million euros per annum.

The raw materials studied in the project were spruce, straw, corn cob and wheat bran used as animal feed. In Finland, the proportion of forest biomass, and conifer biomass in particular, is significant.
Lignocellulosic biomass consists of cellulose, hemicellulose and lignin. Agricultural harvest waste contains large amounts of lignocellulosic biomass, which can be converted industrially into fermentable sugars with the help of enzymes. Microbes can then be used to produce various chemicals, such as bioethanol, from the sugars. Lignocellulosic biomass contains substantial amounts of lignin, which interferes with enzyme activity.

The DISCO project produced new knowledge on the inactivating property of lignin, which helped scientists develop enzymes that tolerate lignin better. New information on enzymes and activities that break down hemicellulose, vital for the efficient exploitation of plant biomass, was also obtained during the project.

British scientists participating in the project determined the structural characteristics of various raw materials. This information can be used to select appropriate enzyme cocktails for raw materials when upgrading plant biomass.

The Dutch company Dyadic is currently commercialising the enzymes developed in the project.

Research Professor Kristiina Kruus of VTT coordinated the DISCO project, which had a total of 11 participants from seven countries. VTT's scientific role in the project related to discovering and developing enzymes from environmental samples as well as culture collections.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
Pathogen Takes Control of Gypsy Moth Populations
A new fungal pathogen is killing gypsy moth caterpillars and crowding out communities of pathogens and parasites that previously destroyed these moth pests.
Super Wheat Brought Closer to Reality
Scientists at the John Innes Centre (JIC) and The Sainsbury Laboratory (TSL) have pioneered a new gene-detecting technology which, if deployed correctly could lead to the creation of a new elite variety of wheat with durable resistance to disease.
Mechanism Behind Plant Withering Clarified
Reproducing the reaction in which harmful reactive oxygen species are created during plant photosynthesis allows researchers to confirm the mechanism behind plant withering.
Sequencing the Salmon Genome
Researchers have established a “human” quality sequence of the Atlantic salmon genome that is now available online.
Improved Path to Cassava Production
Researchers have studied the genetic diversity of cassava, highlighting strategies to improve breeding programmes.
New Online Tool Helps Predict Gene Expression in Plants
Scientists at The Genome Analysis Centre (TGAC) and The John Innes Centre have developed a free online tool that will help a global community of scientists understand more about important food crops.
Rare DNA Transfer Between Animals, Plants
Scientists identify rare DNA transfer between conifers and insects.
A Love Potion for Plant Fertilization
A group of scientists at Nagoya University has succeeded in discovering AMOR, a sugar chain molecule that increases the fertilization efficiency in plants.
How The Bat Got Its Wings
Finding may provide clues to human limb development and malformations.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!