Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Powerful Enzymes Create Ethanol from Agricultural Harvest Waste

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
The mainly EU-funded DISCO project coordinated by VTT Technical Research Centre of Finland has developed powerful enzymes, which accelerate plant biomass conversion into sugars and further into products such as bioethanol.

The project's results include lignin-tolerant enzymes and enzyme cocktails for processing spruce, straw, corn cob and wheat bran. The commercialisation of these enzymes has now begun in the Netherlands.

The EU's DISCO project developed powerful enzymes and enzyme cocktails suitable for various raw materials, with the purpose of converting agricultural side streams into fermentable sugars and further into products such as bioethanol. Plant biomass was chosen as the raw material for the project, since it contains lignocellulosic biomass, which is an abundant raw material.

The commercialisation process of the second-generation bioethanol industry, which uses lignocellulosic biomass instead of starch, has reached critical momentum: there are a total of 15 plants being constructed in Europe, the Americas and Asia. Lignocellulosic biomass use will substantially expand the market for industrial enzymes. The total industrial enzyme market is currently worth approximately 2.7 million euros per annum.

The raw materials studied in the project were spruce, straw, corn cob and wheat bran used as animal feed. In Finland, the proportion of forest biomass, and conifer biomass in particular, is significant.
Lignocellulosic biomass consists of cellulose, hemicellulose and lignin. Agricultural harvest waste contains large amounts of lignocellulosic biomass, which can be converted industrially into fermentable sugars with the help of enzymes. Microbes can then be used to produce various chemicals, such as bioethanol, from the sugars. Lignocellulosic biomass contains substantial amounts of lignin, which interferes with enzyme activity.

The DISCO project produced new knowledge on the inactivating property of lignin, which helped scientists develop enzymes that tolerate lignin better. New information on enzymes and activities that break down hemicellulose, vital for the efficient exploitation of plant biomass, was also obtained during the project.

British scientists participating in the project determined the structural characteristics of various raw materials. This information can be used to select appropriate enzyme cocktails for raw materials when upgrading plant biomass.

The Dutch company Dyadic is currently commercialising the enzymes developed in the project.

Research Professor Kristiina Kruus of VTT coordinated the DISCO project, which had a total of 11 participants from seven countries. VTT's scientific role in the project related to discovering and developing enzymes from environmental samples as well as culture collections.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Biologists Discover Origin of Stomata
Researchers discover genetic mechanism similar in flowering plants and mosses is a result of evolutionary conservation.
Engineering Bacteria to Aid Ethanol
Splicing in genes for ethanol production into bacteria in order to produce ethanol rather than not lactic acid.
Uncovering a World of Viruses
Study that shows human diseases like influenza are derived from those present in invertebrates.
Controlling Cell Division in Plants
Researchers succeeded in developing a new compound, a triarylmethane, that can rapidly inhibit cell division in plants.
Plant Aging Study Produces Insights into Crop Yields
New insights into the mechanism behind how plants age may help scientists better understand crop yields and nutrient allocation.
Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
USDA Uses Quorum Tech to Study Soft Bodied Organisms
Quorum Technologies report on US Department of Agriculture using their PP2000 Cryo-SEM preparation system to prepare soft bodied organisms for study.
Nitrogen Fixing Symbiosis Crucial for Microbiome Assembly
New findings from the study of legumes have identified an unknown role of nitrogen fixation symbiosis on plant root-associated microbiome.
Crop Yield Gets Boost with Modified Genes
Researchers increase plant proteins that result in more efficient use of sunlight.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!