Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Beyond Manifesto: How to Change the Food System

Published: Friday, January 11, 2013
Last Updated: Friday, January 11, 2013
Bookmark and Share
Mark Bittman used the occasion of New Year’s Day to throw down the gauntlet for real and permanent change to the U.S. agricultural system.

“We must figure out a way to un-invent this food system,” he says in a Times opinion column. He likens the scale of the task to tectonic cultural strides like abolition, civil rights, and the women’s vote.

As to how we go about achieving this goal, Bittman speaks in broad terms. He appeals for patience, invoking the pioneers of those transformative movements, who had the perspective that their progress is not just for now but for future generations. He names the culprits of sugary drinks and poor livestock conditions as key points of attack. He calls for goals. Well reasoned approaches, to be sure, but they aren’t a blueprint for specific action.

UC Berkeley researchers have been working on some specifics for several years now, researching the agricultural, policy, and social practices that would make possible the type of systemic change Bittman is advocating. In a special multi-article feature devoted to "diversified farming systems," or DFS, for the December issue of the journal Ecology & Society, scientists from Berkeley, Santa Clara University, and other institutions lay out a comprehensive scientific case that biologically diversified agricultural practices can contribute substantially to food production while creating far fewer environmental harms than industrialized, conventional monoculture agriculture—that is, large swaths of land devoted to growing single crops using chemical inputs.

DFS are different from the narrow definition of organics, and the research shows that, unlike industrial agriculture, biologically diversified agriculture tends to generate and regenerate ecosystem services such as soil fertility, pest and disease control, water-use efficiency, and pollination, which provide critical inputs to agriculture. The research also found that DFS support globally important ecosystem services, including substantially greater biodiversity, carbon sequestration, energy-use efficiency, and resilience to climate change.

But changing America’s agriculture system is more complex than just changing farming techniques, according to Alastair Iles, assistant professor of environmental science, policy, and management, and co-director of the Berkeley Center for Diversified Farming Systems.

“If diversified farming systems are to thrive in the United States, policies and preferences must evolve to reward the environmental and social benefits of sustainable farming and landscape management,” Iles says. “Policies supporting ecological diversification are underdeveloped and fragmented compared with conventional agricultural policies.”

In one Ecology & Society article, Iles and co-author Robin Marsh, also of UC Berkeley, consider several obstacles that prevent or slow the spread of diversified farming practices, such as the broader political and economic context of industrialized agriculture, the erosion of farmer knowledge and capacity, and supply chain and marketing conditions that limit the ability of farmers to adopt sustainable practices.

“To transform agriculture, we need to understand these obstacles and develop and test solutions, such as peer-to-peer learning, recruitment and retention of new farmers through access to credit and land, and compensation for ecological services provided by ranchers, for example,” Iles says.

Other key facets of a sustainable agricultural system include attention to its social dimensions, such as human health, labor, democratic participation, resiliency, diversity, equality, and ethics, according to special issue co-editor Chris Bacon of Santa Clara University. In an article with colleagues, Bacon proposes creating partnerships with institutions that could address issues like immigration, food access, and worker health.

But first and foremost, the farms themselves have to produce enough to remain profitable and to feed a growing population. Conservation biologist Claire Kremen, also a UC Berkeley professor and co-director of the Berkeley DFS Center with Iles, says that more work is needed to build on what is already known about biologically diversified agriculture, to make them these methods even more productive.

“To date, the amount of research and development investment in this type of agriculture is miniscule compared to what’s been invested in conventional agriculture,” Kremen said. “There may be substantial potential to increase food production from biologically diversified, sustainable agriculture that we have not yet tapped into. With research support to study and improve on sustainable farming systems, we can tap that potential. Growers want to utilize sustainable practices if they can, but they need to know it won’t hurt their bottom line.”

So, DFS scientists might argue, Bittman’s New Year’s manifesto, which ends with a call for “energy, action — and patience,” could be amended to include “a comprehensive scientific, political, and sociological approach, and putting dollars behind the right kinds of research.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
International Fruit Pest Targeted by Genomic Research
The spotted wing drosophila is itself being targeted, thanks to groundbreaking genome sequencing.
Friday, December 06, 2013
DNA Sequencing Lifts Veil on Wine’s Microbial Terroir
It’s widely accepted that terroir — the unique blend of a vineyard’s soils, water and climate — sculpts the flavor and quality of wine.
Wednesday, November 27, 2013
Grapevine Virus Screening Saves Napa-Sonoma $60M
Providing disease-free grapevines and rootstock to California’s famed North Coast wine region is money-wise to the tune of more than $60 million annually.
Tuesday, November 19, 2013
New Cattle Virus Identified by Genome Sequencing
A new cow virus that causes neurologic symptoms reminiscent of mad cow disease has been identified and its genome sequenced by a team of researchers.
Thursday, August 15, 2013
More Accurate Model of Climate Change’s Effect on Soil
Scientists have developed a new computer model to measure global warming's effect in soil worldwide that accounts for how bacteria and fungi in soil control carbon.
Friday, August 02, 2013
Predicting how Insects, Plants Interact
Butterfly and moth larvae feeding on native plants will extend their diet to newly introduced non-native plants, but which ones?
Tuesday, July 23, 2013
Gene Discovery May Halt Disease that Threatens Wheat
Researchers have identified a gene that enables resistance to a new race, or strain, of stem rust, a disease threatening global food security.
Monday, July 01, 2013
Reforms Could Boost Use of Land Conservation Banks
California legislators have enacted the state's first conservation banking law, based on a pioneering program launched 18 years ago.
Tuesday, June 11, 2013
Genome of Lotus May Hold Anti-Aging Secrets
The "sacred lotus" is believed to have a powerful genetic system that repairs genetic defects.
Monday, May 13, 2013
Scientists Find Compounds that Boost Oil Output of Algae
Chemists have found several compounds that can boost oil production by green microscopic algae, a potential source of biodiesel and other "green" fuels.
Tuesday, April 09, 2013
Conference Sets Agenda for Climate-smart Ag Research
An action-oriented scientific agenda for tackling global climate change and its impacts on agriculture emerged from the international, three-day Climate-Smart Agriculture Conference.
Tuesday, March 26, 2013
Study Reveals Genetic Diversity of Genes in Peppers
Researchers have developed a “family tree” of sorts for peppers and characterized the diversity of genes found in a collection of common cultivated pepper varieties.
Monday, February 18, 2013
Farmers and Environment Profit from New Website
University of California Cooperative Extension is rolling out a new website for farmers that will help them save money and protect the environment.
Friday, February 01, 2013
Engineered Bacteria Make Fuel from Sunlight
Chemists have engineered blue-green algae to grow chemical precursors for fuels and plastics — the first step in replacing fossil fuels as raw materials for the chemical industry.
Wednesday, January 09, 2013
Scientific News
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Faster, Better, Cheaper: a New Method to Generate Extended Data for Genome Assemblies
The Genome Analysis Centre have developed a new library construction method for genome sequencing that can simultaneously construct up to 12 size-selected long mate pair (LMP) or ‘jump’ libraries ranging in sizes from 1.7kb to 18kb with reduced DNA input, time and cost.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!