Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Initial Draft of the Loblolly Pine Tree Genome Developed

Published: Friday, January 11, 2013
Last Updated: Friday, January 11, 2013
Bookmark and Share
Scientists released the initial draft genome sequence of the loblolly pine, an important conifer species that is used as a feedstock for biofuels and can aid in climate change mitigation. The announcement was made at the 2013 Plant and Animal Genome Conference in San Diego, California.

Researchers at the University of California-Davis, with funding from the U.S. Department of Agriculture (USDA), today released the initial draft genome sequence of the loblolly pine, an important conifer species that is used as a feedstock for biofuels and can aid in climate change mitigation. The announcement was made at the 2013 Plant and Animal Genome Conference in San Diego, California.

“Loblolly pine plays an important role in American forestry, and I am excited to announce that we now have a much-needed tool in unlocking the secrets of these trees,” said Sonny Ramaswamy, director of USDA’s National Institute of Agriculture (NIFA), which funded the research. “I look forward to our continued work with the University of California-Davis and their application of this new knowledge.”

NIFA awarded the $14.6 million grant to UC Davis in 2011. Dr. David Neale leads the 5-year project with collaboration from five other organizations. The team used the latest next-generation sequencing technology to generate 16 billion short sequence fragments, representing 60-fold coverage of the massive loblolly pine genome. Pine genomes are extremely large at 10 times the size of the human genome, making this assembly the largest ever successfully completed. The team generated roughly 1.2 trillion bases of DNA.

“USDA competitive grant programs, such as the Agriculture and Food Research Initiative and its predecessor the National Research Initiative, have made significant and important contributions in building the capacity and infrastructure of forest genomics research toward increasing the productivity and health of American forests,” Neale said. “Now, with the funding of pine genome sequences, forest tree breeders are poised to use modern breeding technologies that are already routine in agricultural crop and livestock breeding. These technologies will also be critical in maintaining adapted and healthy forests facing climate change.”

This draft assembly, which is being made publicly available through the team’s website, will provide a valuable resource for gene discovery while the project team prepares its analysis of the genome for publication. The data gained from the genome sequence could accelerate breeding efforts and enhance the tree’s use as a feedstock for biofuels and biopower.

“This is critical for the forest genetics community as the ability to accelerate breeding trees will produce healthier forests in light of climate change and increased disease and insect pressure,” said Dr. Jim Reaves, Forest Service Deputy Chief for Research and Development. The Forest Service’s Southern Research Station conserved and supplied the plant tissue for the project and provided quality control on the DNA samples that were sequenced.

Increased planting of fast growing varieties of loblolly pine and other agroforestry crops will also contribute to carbon sequestration and help to mitigate the effects of climate change.

Loblolly pine is the most economically important tree species in the United States. Southern pines provide 58 percent of the timber in the country and 15 percent globally. The native range of loblolly pine spans 14 states from southern New Jersey south to central Florida and west to Texas where it makes up more than half of the existing forest. It is likely the knowledge gained from this sequence will apply across much of the Pinaceae family, containing most of the commercially important conifers of the world.

UC Davis is joined by the following organizations on the 5-year Loblolly Pine Genome Project:  Children’s Hospital of Oakland Research Institute, Washington State University, Texas A&M University, Indiana University, Johns Hopkins University and the University of Maryland. The draft assembly was built using the MaSuRCA assembler developed at the University of Maryland and Johns Hopkins University, which was specifically modified to handle the very large amount of data generated by the project. The sequenced pine germplasm came from the North Carolina State University Cooperative Breeding Program and was produced by a mating made by the Virginia Department of Forestry.

The team is also currently working on sequencing a second important conifer species, sugar pine from California.

The award was made through NIFA’s Agriculture and Food Research Initiative (AFRI). AFRI is NIFA’s flagship competitive grant program and was established by the 2008 Farm Bill. AFRI supports work in six priority areas: 1) plant health and production and plant products; 2) animal health and production and animal products; 3) food safety, nutrition and health; 4) renewable energy, natural resources and environment; 5) agriculture systems and technology; and 6) agriculture economics and rural communities.

Through federal funding and leadership for research, education and extension programs, NIFA focuses on investing in science and solving critical issues impacting people's daily lives and the nation's future.  More information is available at:

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on the Origin of the Date Palm
Researchers also find ‘genetic mutation’ that is responsible for dates’ color.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Speeding Up Potato Breeding
A joint project is investigating the potential of drones for speeding up the development of new potato varieties.
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Ancestors of Land Plants Were Wired to Make the Leap to Shore
When the algal ancestor of modern land plants made the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos