Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Christmas Tree and Its Genome Have Remained Very Much the Same Over the Last 100 Million Years

Published: Friday, January 11, 2013
Last Updated: Friday, January 11, 2013
Bookmark and Share
A study published by Université Laval researchers and their colleagues from the Canadian Forest Service reveals that the genome of conifers such as spruce, pine, and fir has remained very much the same for over 100 million years.

A study published by Université Laval researchers and their colleagues from the Canadian Forest Service reveals that the genome of conifers such as spruce, pine, and fir has remained very much the same for over 100 million years. This remarkable genomic stability explains the resemblance between today's conifers and fossils dating back to the days when dinosaurs roamed Earth. Details of this finding are presented in a recent issue of the journal BMC Biology.

The team supervised by Professor Jean Bousquet, who holds the Canada Research Chair in Forest and Environmental Genomics, came to this conclusion after analyzing the genome of conifers and comparing it to that of flowering plants. Both plant groups stem from the same ancestor but diverged some 300 million years ago.

Researchers compared the genome macrostructure for 157 gene families present both in conifers and flowering plants. They observed that the genome of conifers has remained particularly stable for at least 100 million years, while that of flowering plants has undergone major changes in the same period. "That doesn't mean there haven't been smaller scale modifications such as genetic mutations," points out Jean Bousquet. "However, the macrostructure of the conifer genome has been remarkably stable over the ages," adds the professor from the Université Laval Faculty of Forestry, Geography, and Geomatics.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Peachy Defense System for Seeds
ETH chemists are developing a new coating method to protect seeds from being eaten by insects. In doing so, they have drawn inspiration from the humble peach and a few of its peers.
Roundup Impacts Gene Expression
Study published on the impact of low-dose toxicity of Roundup weed-killer on gene expression profiles.
Meaningful Part of Maize Genome Defined
FSU-Cornell team show that a small percentage of the maize genome is responsible for 40 percent of a plant’s trait diversity.
Plant Stem Cell Discovery Points to Increased Yields
Braking signals from the leaves tell stem cells to stop proliferating.
Plasma Dose Improves Agricultural Crop Harvests
Researchers at Japan have developed a technique to improve crop yields by treating seeds prior to planting with a safe dose of plasma radiation.
TGAC Installs Largest SGI UV 300 Supercomputer for Life Sciences
The Genome Analysis Centre (TGAC) partners with Global HPC hardware giant SGI to address the most complex problems in genomics analysis.
Carrot Genome Uncovered
Carrot genome paints picture of domestication, could help improve crops.
Flowering Regulation Mechanism Discovered
Monash researchers have discovered a new mechanism that enables plants to regulate their flowering in response to raised temperatures.
Nanoparticles Present Sustainable Way to Grow Food Crops
Nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!