Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Method Developed to Diagnose Hereditary Breast and Ovarian Cancer

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
Massive sequencing algorithm and bioinformatic analysis to detect very efficiently genetic mutations linked to the disease.

Researchers of the Catalan Institute of Oncology (ICO) at the Bellvitge Biomedical Research Institute (IDIBELL) have developed and validated a new method to diagnose hereditary breast and ovarian cancer syndrome based on mass sequencing of BRCA1 and BRCA2 genes. The model is based on a genetic analysis and bioinformatics which has been proved very effective. The new protocol has been described in an article published in the European Journal of Human Genetics.
 
In recent years, new advances in sequencing techniques have involved the development of new platforms for nucleic acid sequencing, called mass sequencing platforms or next sequencing generation. These technological improvements have brought a revolution in biomedical research, in the field of genetics and genomics. The emergence of next-generation sequencers and the possibility of combining samples from different patients, using identifiers have allowed adapt these new technologies in the field of genetic diagnostics.
 
Using a platform of the last generation mass sequencing, the team led by the researcher Conxi Lázaro, from the Hereditary Cancer Program at the ICO and IDIBELL, has developed a comprehensive protocol that allows sequenced all coding regions and adjacent regions of BRCA1 and BRCA2 genes, responsible for hereditary breast and ovarian cancer.
 
 Mass sequencing algorithm

 
"This approach has identified all point mutations and small deletions and insertions analyzed, even in regions of high technical difficulty, such as homopolymeric regions", explains the ICO-IDIBELL researcher. The developed protocol is an own algorithm of mass sequencing and bioinformatics analysis that has been shown to be very efficient in the detection of all existing mutations and to eliminate false positives.
 
The validation of this algorithm to diagnose hereditary breast and ovarian cancer syndrome has shown a sensitivity and specificity of 100% in the analyzed samples, while reducing costs and time for obtaining the results.
 
Furthermore, the research team led by Lázaro has implemented the use of this approach for the responsible genes for hereditary colorectal cancer, such as familial polyposis and Lynch syndrome.
 
Up to ten percent of cancers are hereditary, which means they are transmitted from parents to children the genetic mutations predisposing to various types of tumors. The identification of these mutations is very important to prevent the occurrence of tumors in people who have familial predisposition.
 
The hereditary breast and ovarian cancer syndrome is one of the hereditary cancer types that affects more people. The disease is caused by mutations in the BRCA1 and BRCA2 genes. These mutations are also associated with other kind of cancers.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Accelerating Forage Breeding to Boost Livestock Productivity
International expert skill-sets in genomics and bioinformatics enhance our capacity to breed improved forages for Africa.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
So Long, Snout
Research helps answer how birds got their beaks.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Algae Nutrient Recycling is a Triple Win
Sandia method cheaper, greener and cuts competition for fertilizer.
Non-Transgenic Rapeseed Product Launched For Chinese Market
Cibus and Rotam have announced a new agreement to cooperate in the development of herbicide-tolerant rapeseed in China.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
BESC Creates Microbe That Bolsters Isobutanol Production
Another barrier to commercially viable biofuels from sources other than corn has fallen with the engineering of a microbe that improves isobutanol yields by a factor of 10.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!