Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Discover Genetic Key to Efficient Crops

Published: Thursday, January 24, 2013
Last Updated: Thursday, January 24, 2013
Bookmark and Share
Cornell researchers discover gene that could help feed growing human population.

With projections of 9.5 billion people by 2050, humankind faces the challenge of feeding modern diets to additional mouths while using the same amounts of water, fertilizer and arable land as today.

Cornell researchers have taken a leap toward meeting those needs by discovering a gene that could lead to new varieties of staple crops with 50 percent higher yields.

The gene, called Scarecrow, is the first discovered to control a special leaf structure, known as Kranz anatomy, which leads to more efficient photosynthesis. Plants photosynthesize using one of two methods: C3, a less efficient, ancient method found in most plants, including wheat and rice; and C4, a more efficient adaptation employed by grasses, maize, sorghum and sugarcane that is better suited to drought, intense sunlight, heat and low nitrogen.

"Researchers have been trying to find the underlying genetics of Kranz anatomy so we can engineer it into C3 crops," said Thomas Slewinski, lead author of a paper that appeared online in November in the journal Plant and Cell Physiology. Slewinski is a postdoctoral researcher in the lab of senior author Robert Turgeon, professor of plant biology.

The finding "provides a clue as to how this whole anatomical key is regulated," said Turgeon. "There's still a lot to be learned, but now the barn door is open and you are going to see people working on this Scarecrow pathway." The promise of transferring C4 mechanisms into C3 plants has been fervently pursued and funded on a global scale for decades, he added.

If C4 photosynthesis is successfully transferred to C3 plants through genetic engineering, farmers could grow wheat and rice in hotter, dryer environments with less fertilizer, while possibly increasing yields by half, the researchers said.

C3 photosynthesis originated at a time in Earth's history when the atmosphere had a high proportion of carbon dioxide. C4 plants have independently evolved from C3 plants some 60 times at different times and places. The C4 adaptation involves Kranz anatomy in the leaves, which includes a layer of special bundle sheath cells surrounding the veins and an outer layer of cells called mesophyll. Bundle sheath cells and mesophyll cells cooperate in a two-step version of photosynthesis, using different kinds of chloroplasts.

By looking closely at plant evolution and anatomy, Slewinski recognized that the bundle sheath cells in leaves of C4 plants were similar to endodermal cells that surrounded vascular tissue in roots and stems.

Slewinski suspected that if C4 leaves shared endodermal genes with roots and stems, the genetics that controlled those cell types may also be shared. Slewinski looked for experimental maize lines with mutant Scarecrow genes, which he knew governed endodermal cells in roots. When the researchers grew those plants, they first identified problems in the roots, then checked for abnormalities in the bundle sheath. They found that the leaves of Scarecrow mutants had abnormal and proliferated bundle sheath cells and irregular veins.

In all plants, an enzyme called RuBisCo facilitates a reaction that captures carbon dioxide from the air, the first step in producing sucrose, the energy-rich product of photosynthesis that powers the plant. But in C3 plants RuBisCo also facilitates a competing reaction with oxygen, creating a byproduct that has to be degraded, at a cost of about 30-40 percent overall efficiency. In C4 plants, carbon dioxide fixation takes place in two stages. The first step occurs in the mesophyll, and the product of this reaction is shuttled to the bundle sheath for the RuBisCo step. The RuBisCo step is very efficient because in the bundle sheath cells, the oxygen concentration is low and the carbon dioxide concentration is high. This eliminates the problem of the competing oxygen reaction, making the plant far more efficient.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Wicked Weeds May Be Agricultural Angels
Agricutural scientists suggest less control over nature, as weeds can be beneficial to agriculture.
Wednesday, November 16, 2016
Pathogen Takes Control of Gypsy Moth Populations
A new fungal pathogen is killing gypsy moth caterpillars and crowding out communities of pathogens and parasites that previously destroyed these moth pests.
Tuesday, April 26, 2016
$4.8M USAID Grant to Improve Food Security
To strengthen capacity to develop and disseminate genetically engineered eggplant in Bangladesh and the Philippines, the USAID has awarded Cornell a $4.8 million, three-year cooperative grant.
Friday, April 01, 2016
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
Thursday, August 28, 2014
Pest Attacks Can Lead to Bigger Crop Yields
New project receive three-year funding of $498,000 from USDA.
Thursday, June 26, 2014
Algal Genes May Boost Efficiency, Yield in Staple Crops
New research has taken a step toward employing genes from blue-green algae to improve staple crop photosynthesis.
Wednesday, May 21, 2014
Study to Focus on Rice Genes, Yield and Climate
Cornell researchers received a $600,000 grant from the U.S. Department of Agriculture (USDA) to study relationships among rice genetics, crop yields and climate.
Thursday, May 01, 2014
New Alfalfa Variety Resists Ravenous Local Pest
The new variety has some resistance against the alfalfa snout beetle which has ravaged alfalfa fields.
Monday, April 28, 2014
Predators Delay Pest Resistance to Bt Crops
Crops genetically modified with the bacterium Bt(Bacillus thuringiensis) produce proteins that kill pest insects.
Monday, March 10, 2014
Shark, Human Proteins are Surprisingly Similar
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.
Friday, December 06, 2013
Surprises Discovered in Decoded Kiwifruit Genome
DNA sequence of the kiwifruit has many genetic similarities between its 39,040 genes and other plant species, including potatoes and tomatoes.
Tuesday, October 22, 2013
Produce Perfect: Biotech Sweet Corn goes Unblemished
With the kernel-loving earworm, producing unblemished ears of sweet corn is difficult.
Monday, October 14, 2013
New Micro Water Sensor Can Aid Growers
Crop growers, wine grape and other fruit growers, food processors and even concrete makers all benefit from water sensors for accurate, steady and numerous moisture readings.
Monday, October 14, 2013
Partnership Homes in on Regenerative Medicine
Scientists are to advance healing techniques and technologies for animals and humans.
Friday, October 04, 2013
Scientific News
Plant Analysis – Identifying Metabolites
New plant analysis method shows biologically active plant substances are far more common than previously thought.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Biologists Discover Origin of Stomata
Researchers discover genetic mechanism similar in flowering plants and mosses is a result of evolutionary conservation.
Uncovering a World of Viruses
Study that shows human diseases like influenza are derived from those present in invertebrates.
Engineering Bacteria to Aid Ethanol
Splicing in genes for ethanol production into bacteria in order to produce ethanol rather than not lactic acid.
Controlling Cell Division in Plants
Researchers succeeded in developing a new compound, a triarylmethane, that can rapidly inhibit cell division in plants.
Plant Aging Study Produces Insights into Crop Yields
New insights into the mechanism behind how plants age may help scientists better understand crop yields and nutrient allocation.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!