Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cracking the hummus: Chickpea genome sequenced

Published: Tuesday, January 29, 2013
Last Updated: Tuesday, January 29, 2013
Bookmark and Share
An international team of scientists has sequenced the genome of the chickpea, a critically important crop in many parts of the world, especially for small-farm operators in marginal environments of Asia and sub-Saharan Africa

An international team of scientists has sequenced the genome of the chickpea, a critically important crop in many parts of the world, especially for small-farm operators in marginal environments of Asia and sub-Saharan Africa, according to an announcement from researchers at the University of California, Davis, and the International Crops Research Institute for the Semi-Arid Tropics in India.

The researchers published this week in the online version of the journal Nature Biotechnology the reference genome of the chickpea variety known as CDC Frontier and the genome sequence of 90 cultivated and wild chickpea lines from 10 different countries.

“The importance of this new resource for chickpea improvement cannot be overstated,” said Douglas Cook, a UC Davis professor of plant pathology.

“The sequencing of the chickpea provides genetic information that will help plant breeders develop highly productive chickpea varieties that can better tolerate drought and resist disease — traits that are particularly important in light of the threat of global climate change,” he said.

Cook is one of three lead authors on the chickpea genome sequencing project, along with Rajeev Varshney of the International Crops Research Institute for the Semi-Arid Tropics and Professor Jun Wang, director of the Beijing Genomics Institute of China.

The chickpea plant, whose high-protein seed is also referred to as a garbanzo bean, is thought to have originated in the Middle East nearly 7,400 years ago.

India grows, consumes and imports more chickpeas than any other nation in the world, producing more than 8 million tons annually, according to the Food and Agriculture Organization’s 2011 statistics. In contrast, the United States produced 95,770 tons of chickpeas annually, as of 2011.

Today’s announcement of the chickpea genome sequencing is the culmination of years of genome analysis by the International Chickpea Genome Sequencing Consortium, led by the International Crops Research Institute for Semi-Arid Tropics. The consortium includes 49 scientists from 23 organizations in 10 countries.

Funding for the sequencing project was provided by the U.S. National Science Foundation; Saskatchewan Pulse Growers of Canada; Grains Resource Development Corporation of Australia; Indo-German Technology Corporation of Germany and India; National Institute for Agricultural and Food Research and Technology of Spain; U.S. Department of Agriculture; Ministry of Education, Youth and Sports of the Czech Republic; University of Cordoba, Spain; Indian Council of Agricultural Research; BGI of China; and International Crops Research Institute for the Semi-Arid Tropics.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Breakthrough in Plant Salt-Tolerance Research
Researchers have made a breakthrough in plant salt tolerance that could lead to new salt tollerant crop types.
Microbes Help Plants Survive In Severe Drought
Researchers discover plants survive better under drought conditions with help from natural microbes.
Mosquito Genetics Determine Tastes
Study reveals mosuito's preference for human versus animal biting is determined by genetics.
Mouse Genes Guiding Precision Medicine
Research of the mouse genome has identified hundreds of essential-to-life genes from the 1751 genes studied.
Environmental Impact of GM Crops
Following the adoption of GM crops, insecticide usage decreases but herbicide use increases, study shows.
Genes Essential to Life Discovered
Genes critical for life are discovered in humans and mice as part of large-scale phenotyping study.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!