Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Work Needed to Make Algal Biofuel Viable

Published: Thursday, January 31, 2013
Last Updated: Thursday, January 31, 2013
Bookmark and Share
Cornell researchers find that more innovation is needed to make the technology economically and energetically viable at a commercial scale.

To date, researchers have struggled to determine if the nonrenewable energy it takes to make a gallon of algal biofuel will be equal to, less than or greater than the energy produced.

A Cornell study published online Dec. 13 in the journal Environmental Science and Technology has addressed that question. The work was led by Deborah Sills, a postdoctoral associate in the research groups of Charles Greene, director of the Ocean Resources and Ecosystems Program and professor of earth and atmospheric sciences, and Jefferson Tester, associate director for energy at the Atkinson Center for a Sustainable Future and the Croll Professor of Sustainable Energy Systems in the School of Chemical and Biomolecular Engineering.

The researchers used computer simulations to analyze uncertainties in the algal biofuel production lineup. They found that when oil is extracted from algae through thermal drying, or when the algal cultivation step has a low yield, the energy produced is less than the energy expended to produce the fuel. However, when methods that promote high algal yields are matched with wet extraction techniques -- both processes that require further technical innovation -- algal biofuels can provide a viable alternative to liquid fossil fuels, like gasoline and diesel.

Compared with land plants, algae can produce greater than 10 times more oil per acre, use nutrients more efficiently, and do not require high-quality agricultural land. Also, marine algae do not require large quantities of freshwater.

The study examines each step in the process, from growing marine-based algae to separating and refining biofuel products and by-products. A life cycle framework helped establish ranges of possible outcomes with probabilistic methods employed to characterize key variables, which the authors say is the correct approach for assessing such developing technologies.

"Our biggest contribution is pointing out how important it is to report the range of values needed for technologies that don't exist," Sills said. "There is no algae to biofuel industry yet," so no large-scale sets of data exist to judge how feasible algal biofuels can be, Sills added. "We show that improvements are needed at every single step of the process."

"We've tried to be more transparent and reflect on the inherent variability and unknown character of the processes involved," Tester said.

Values reported in previous studies, while not incorrect, represented specific case studies and often reported findings as a single value. This yielded incomplete information for making strong conclusions about the viability of algal biofuels, the researchers said.

Making biofuels from algae is a five-step process: cultivation; harvesting and dewatering; lipid (oil) extraction; lipid conversion to liquid biofuel; and creating such value added co-products as methane from bio-digesters, or animal feed from leftover carbohydrates and proteins.

While all the steps require improvements, a few of the processes fared particularly poorly, according to the study. For example, all the scenarios studied failed to reach a break-even point when algae were grown with methods that had low yields of biomass. The cultivation phase involves growing algae in large open ponds with a mixer to expose algae to the sun. Fertilizers and carbon dioxide, potentially provided from industrial sources, are needed. Algal productivity depends on species, sun exposure, temperature, competing organisms, culture densities and nutrients.

Similarly, during the lipid extraction phase, no scenario supported a dry extraction process as an energetically viable option. Thermal drying requires too much energy, with solar drying alternatives requiring space. Wet lipid extraction using water under high temperatures and pressure produced the best results, especially when coupled with growing methods that produced high biomass, though those technologies have only been tested on small scales.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
Thursday, August 28, 2014
Pest Attacks Can Lead to Bigger Crop Yields
New project receive three-year funding of $498,000 from USDA.
Thursday, June 26, 2014
Algal Genes May Boost Efficiency, Yield in Staple Crops
New research has taken a step toward employing genes from blue-green algae to improve staple crop photosynthesis.
Wednesday, May 21, 2014
Study to Focus on Rice Genes, Yield and Climate
Cornell researchers received a $600,000 grant from the U.S. Department of Agriculture (USDA) to study relationships among rice genetics, crop yields and climate.
Thursday, May 01, 2014
New Alfalfa Variety Resists Ravenous Local Pest
The new variety has some resistance against the alfalfa snout beetle which has ravaged alfalfa fields.
Monday, April 28, 2014
Predators Delay Pest Resistance to Bt Crops
Crops genetically modified with the bacterium Bt(Bacillus thuringiensis) produce proteins that kill pest insects.
Monday, March 10, 2014
Shark, Human Proteins are Surprisingly Similar
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.
Friday, December 06, 2013
Surprises Discovered in Decoded Kiwifruit Genome
DNA sequence of the kiwifruit has many genetic similarities between its 39,040 genes and other plant species, including potatoes and tomatoes.
Tuesday, October 22, 2013
Produce Perfect: Biotech Sweet Corn goes Unblemished
With the kernel-loving earworm, producing unblemished ears of sweet corn is difficult.
Monday, October 14, 2013
New Micro Water Sensor Can Aid Growers
Crop growers, wine grape and other fruit growers, food processors and even concrete makers all benefit from water sensors for accurate, steady and numerous moisture readings.
Monday, October 14, 2013
Partnership Homes in on Regenerative Medicine
Scientists are to advance healing techniques and technologies for animals and humans.
Friday, October 04, 2013
Using Genes to Rescue Animal and Plants from Extinction
With estimates of losing 15 to 40 percent of the world’s species over the next four decades researchers whether science should employ genetic engineering to the rescue.
Friday, September 27, 2013
Senator to Tout Cornell Food Safety, Dairy Expertise to Feds
Cornell University is positioned to be a national center of excellence in dairy and food safety.
Monday, September 09, 2013
'Fountain of Youth’ for Leaves Discovered
A team has identified an enzymatic fountain of youth that slows the process of leaf death.
Friday, August 23, 2013
Scientific News
New Organic Plant Breeding Effort to Produce Novel Varieties and Train New Breeders
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on the Origin of the Date Palm
Researchers also find ‘genetic mutation’ that is responsible for dates’ color.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos