Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Understanding Termite Digestion Could Help Biofuels, Insect Control

Published: Monday, February 25, 2013
Last Updated: Monday, February 25, 2013
Bookmark and Share
A termite's own biology with help from microorganisms called protists, are keys to the insect's digestion of woody material.

Michael Scharf, the O. Wayne Rollins/Orkin Endowed Chair in Urban Entomology, studies termite digestion to improve biofuels production and find better ways to control termites. The U.S. Department of Agriculture estimates the cost of controlling termites and repairing damaged homes is $2 billion each year in the United States.

Much of the study on how termites break down woody materials, which focused on the symbiotic relationship between the insect and the bacteria living in its gut, found that bacteria apparently have little, if anything, to do with termite digestion.

Scharf and collaborators at the University of Florida wanted to see how diet affected those bacteria. If the bacteria play a role in digestion, the type of materials the insect eats should affect the composition of the bacterial community living in the termite gut.

More than 4,500 different species of bacteria were cataloged in termite guts. When multiple colonies of termites were independently fed diets of wood or paper, however, those bacteria were unaffected.

"You would think diet would cause huge ecological shifts in bacterial communities, but it didn't. We didn't detect any statistical differences," Scharf said.

What they did see were far more significant changes in gene expression in the termites and the protists that live in the insects' guts along with the bacteria.

"The bacteria communities seem very stable, but the host and the protozoa gene expression are changing a lot based on diet," Scharf said.

The scientists looked at 10,000 gene sequences from the termites and protists to determine which genes were expressed based on differing diets. Termites and protists fed woody and lignin-rich diets changed expression of about 500 genes, leading Scharf to believe those genes might be important for breaking down lignin, a rigid material in plant cell walls that isn't easily broken down when making biofuels.

"We see much more of the playing field now," Scharf said.

Understanding which genes are involved in digestion should help researchers track down the enzymes that actually break down woody materials in termite digestion. Those enzymes may be tools scientists could use to better break down biomass and extract sugars during biofuel production.

The National Science Foundation, the Consortium for Plant Biotechnology Inc. and the U.S. Department of Energy funded the research.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Producing Orange Corn Rich in Provitamin A
Improvement of carotenoid levels in corn a simpler, faster process for plant breeders.
Saturday, October 11, 2014
Mutant Corn Could Yield New Ways to Curb 'Billion-Dollar Bug'
Researchers have discovered a novel corn mutant whose leaves are highly susceptible to attack by Western corn rootworm beetles.
Thursday, November 28, 2013
Purdue Ag to Receive Major Funding for Plant Sciences
Purdue's College of Agriculture will receive more than $20 million in university funding for plant sciences research and education.
Monday, September 16, 2013
Indiana Biosciences Research Institute Unveiled
Purdue University part of first industry-led collaborative life sciences research institute in the United States.
Monday, June 10, 2013
Scientists Learning how Multiple-Genome Plants Reproduce
A study out of Harvard and Purdue Universities is starting to unravel the genetic mechanisms that allow some plants to duplicate their entire genomes and continue to reproduce.
Wednesday, January 09, 2013
Frontiers in Bioenergy Symposium
United States-Brazilian Symposium on Sustainable Bioenergy, May 15-18, 2011; Purdue University, West Lafayette, Indiana 47907
Monday, May 09, 2011
Plants can adapt genetically to survive harsh environments
A Purdue University scientist has found genetic evidence of how some plants adapt to live in unfavorable conditions, a finding he believes could one day be used to help food crops survive in new or changing environments.
Tuesday, February 01, 2011
Gene find could lead to healthier food, better biofuel production
Scientists have found the last undiscovered gene responsible for the production of the amino acid phenylalanine, a discovery that could lead to processes to control the amino acid to boost plants' nutritional values and produce better biofuel feedstocks.
Tuesday, November 30, 2010
Gene leads to longer shelf life for tomatoes, possibly other fruits
A researcher has found a sort of fountain of youth for tomatoes that extends their shelf life by about a week
Tuesday, June 29, 2010
Facilitating Conservation Farming Practices and Enhancing Environmental Sustainability with Agricultural Biotechnology.
CTIC's new publication explores the breadth of the environmental benefits of conservation tillage practices, which are facilitated significantly by biotechnology crops.
Monday, June 28, 2010
Fern's evolution gives arsenic tolerance that may clean toxic land
Isolating a gene that allows a type of fern to tolerate high levels of arsenic, Purdue University researchers hope to use the finding to create plants that can clean up soils and waters contaminated by the toxic metal.
Tuesday, June 15, 2010
Genome Sequencing Speeds Ability to Improve Soybeans
Purdue researchers are sequencing the soybean genome to better understand its genes and to improve its characteristics.
Friday, January 15, 2010
Scientific News
New Organic Plant Breeding Effort to Produce Novel Varieties and Train New Breeders
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on the Origin of the Date Palm
Researchers also find ‘genetic mutation’ that is responsible for dates’ color.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos