Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Hidden Layer of Genome Unveils how Plants may Adapt to Environments Throughout the World

Published: Thursday, March 07, 2013
Last Updated: Thursday, March 07, 2013
Bookmark and Share
Scientists at the Salk Institute for Biological Studies have identified patterns of epigenomic diversity that not only allow plants to adapt to various environments, but could also benefit crop production and the study of human diseases.

Scientists at the Salk Institute for Biological Studies have identified patterns of epigenomic diversity that not only allow plants to adapt to various environments, but could also benefit crop production and the study of human diseases.

Published March 6 in Nature, the findings show that in addition to genetic diversity found in plants throughout the world, their epigenomic makeup is as varied as the environments in which they are found. Epigenomics is the study of the pattern of chemical markers that serve as a regulatory layer on top of the DNA sequence. Depending on where they grow, the plants' epigenomic differences may allow them to rapidly adapt to their environments.

Epigenomic modifications alter gene expression without changing the letters of the DNA alphabet (A-T-C-G), providing cells with an additional tool to fine-tune how genes control the cellular machinery. These changes occur not only in plants, but in humans as well.

"We looked at plants collected from around the world and found that their epigenomes are surprisingly different," says senior author Joseph R. Ecker, a professor in Salk's Plant Molecular and Cellular Biology Laboratory and holder of the Salk International Council Chair in Genetics. "This additional diversity may create a way for plants to rapidly adapt to diverse environments without any genetic change in their DNA, which takes a very long time."

By understanding epigenomic alterations in plants, scientists may be able to manipulate them for various purposes, including biofuels and creating crops that can withstand stressful events such as drought. That knowledge of epigenomic changes in crop plants could tell producers what to breed for and could have a huge impact on identifying plants that can survive certain conditions and adapt to environmental stressors, says Ecker, who is also a Howard Hughes Medical Institute and Gordon and Betty Moore Foundation Investigator.

Using MethylC-Seq, a method for mapping epigenomic changes developed by Ecker, the researchers analyzed methylation patterns from a population of Arabidopsis thaliana, a modest mustard weed that has become to plant biology what laboratory mice are to animal biology. The plants were from a variety of climates in the Northern Hemisphere, from Europe to Asia and Sweden to the Cape Verde Islands. Ecker's team examined the genomes and methylomes of A. thaliana, the makeup of their entire genetic and epigenomic codes, respectively, which is the first step toward understanding the impact of epigenetic changes on the plants' physical characteristics and ability to adapt to their environment.

"We expected variation in methylation patterns among groups of plants from around the globe," says co-lead author Robert J. Schmitz, a postdoctoral researcher in Ecker's lab. "The amount, however, was far greater than we ever anticipated."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Salk scientists discover how plants grow to escape shade
Findings could lead to high-yield crops that gather light more efficiently and make better use of farmland
Friday, April 20, 2012
Scientific News
Genetic Ancestry of Cultivated Strawberry Unravelled
UNH scientists constructed a linkage map of the seven chromosomes of the diploid Fragaria iinumae, which allows them to fill in a piece of the genetic puzzle about the eight sets of chromosomes of the cultivated strawberry.
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
From Fins to Fingers
New gene-editing methods help the mapping of cells linking fish fins and mammalian limbs.
Unravelling a Microbial Mess
Scientists have untangled the Kansas-based mess of microbes more fully than scientists have ever done for a sample of soil.
Tobacco Hornworm Genome Sequenced
A Kansas State University-led international team has sequenced the genome of the tobacco hornworm — a caterpillar species used in many research laboratories for studies of insect biology.
Zeroing In On Better Mandarin Traits
Scientists from the University of Florida have identified genetic markers that could be used to increase mandarin quality.
The Genetics Behind Anxiety Disorders
Anxiety disorders are the most common type of mental illness in the United States. And while much is understood about the biochemistry of anxiety, little is known about the genetic variation associated with it.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Genome Sequencing May Help Avert Banana Armageddon
Researchers at the University of California, Davis, and in the Netherlands have discovered how three fungal diseases have evolved into a lethal threat to the world’s bananas.
Virus Attracts Bumblebees to Infected Plants by Changing Scent
Study of bee-manipulating plant virus reveals that replicating the scent caused by infection could encourage declining bee populations to pollinate crops.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!