Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Disease-Resistant Tomatoes Fight Lethal Pests

Published: Wednesday, April 03, 2013
Last Updated: Wednesday, April 03, 2013
Bookmark and Share
In the battle against thrips, Cornell scientist has developed a new weapon: a tomato that packs a powerful one-two punch to deter the pests and counter the killer viruses they transmit.

The “dual resistant” insect and virus varieties may reduce or even eliminate the need for pesticides in several regions.

Thrips are tiny insects that pierce and suck fluids from hundreds of species of plants, including tomatoes, grapes, strawberries and soybeans. They also transmit such diseases as the tomato spotted wilt virus, causing millions of dollars in damage to U.S. agricultural crops each year.

Adapting a novel form of insect resistance discovered in a wild plant native to Peru, Mutschler-Chu, professor of plant breeding and genetics, first isolated the resistance. She found that it was mediated by droplets of sugar esters, called acylsugars, that are produced and exuded from hairs (trichomes) that cover the plants. The acylsugars don’t kill the insects, but deter them from feeding or laying eggs on the plants. The process does not require genetic modification and is completely safe.

After successfully transferring the resistance into new lines and breeding out undesirable traits, her team added a second layer of protection: one or both of two natural genes known to resist the so-called TOSPO viruses, which include tomato spotted wilt virus.

“If some thrips get through with the virus, the virus resistance genes are there to mop it up,” Mutschler-Chu said.

The Cornell thrips-resistant tomato lines, with and without the virus resistance genes, will be used by Mutschler-Chu and an interdisciplinary team of eight other scientists from seven other institutions nationwide as part of a new five-year, $3.75 million project to control thrips and TOSPO viruses in tomatoes. The project is funded by the U.S. Department of Agriculture’s Agriculture and Food Research Initiative and is led by entomologist Diane Ullman of the University of California, Davis, and plant pathologist John Sherwood of the University of Georgia.

Mutschler-Chu said the collaboration will allow her to test her varieties in different regions and use the feedback to further refine her lines and create new, improved ones. Whether it be altering sugar levels to suit different environments, or tweaking virus resistance, Mutschler-Chu wants to discover the best package for insect and virus control. Her discoveries will be shared with seed companies so they can transfer the traits into their varieties.

“It brings us closer and closer to something that can be used commercially to essentially eliminate the need for pesticides in many growing regions,” Mutschler-Chu said.

The project rests on a foundation that was built over 20 years, supported by college-level funding and federal HATCH grants. During that time, new tools of molecular biology were developed, from PCR-based markers and SNP markers to the sequencing of the tomato genome. Using the new methods, it took Mutschler-Chu 10 years to develop the first tomato line with enough acylsugar, then four years to create a better series of 30 lines.

The impact could be far-reaching, she said. Not only would it be a boon to the U.S agricultural economy, it could also have significant impact in the developing world, where tomatoes are one of the most popular vegetable cash crops, especially for small subsistence farmers.

“This is even more critical, because they don’t have the resources to buy pesticides, and there is often misuse of pesticides,” Mutschler-Chu said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Pathogen Takes Control of Gypsy Moth Populations
A new fungal pathogen is killing gypsy moth caterpillars and crowding out communities of pathogens and parasites that previously destroyed these moth pests.
Tuesday, April 26, 2016
$4.8M USAID Grant to Improve Food Security
To strengthen capacity to develop and disseminate genetically engineered eggplant in Bangladesh and the Philippines, the USAID has awarded Cornell a $4.8 million, three-year cooperative grant.
Friday, April 01, 2016
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
Thursday, August 28, 2014
Pest Attacks Can Lead to Bigger Crop Yields
New project receive three-year funding of $498,000 from USDA.
Thursday, June 26, 2014
Algal Genes May Boost Efficiency, Yield in Staple Crops
New research has taken a step toward employing genes from blue-green algae to improve staple crop photosynthesis.
Wednesday, May 21, 2014
Study to Focus on Rice Genes, Yield and Climate
Cornell researchers received a $600,000 grant from the U.S. Department of Agriculture (USDA) to study relationships among rice genetics, crop yields and climate.
Thursday, May 01, 2014
New Alfalfa Variety Resists Ravenous Local Pest
The new variety has some resistance against the alfalfa snout beetle which has ravaged alfalfa fields.
Monday, April 28, 2014
Predators Delay Pest Resistance to Bt Crops
Crops genetically modified with the bacterium Bt(Bacillus thuringiensis) produce proteins that kill pest insects.
Monday, March 10, 2014
Shark, Human Proteins are Surprisingly Similar
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.
Friday, December 06, 2013
Surprises Discovered in Decoded Kiwifruit Genome
DNA sequence of the kiwifruit has many genetic similarities between its 39,040 genes and other plant species, including potatoes and tomatoes.
Tuesday, October 22, 2013
Produce Perfect: Biotech Sweet Corn goes Unblemished
With the kernel-loving earworm, producing unblemished ears of sweet corn is difficult.
Monday, October 14, 2013
New Micro Water Sensor Can Aid Growers
Crop growers, wine grape and other fruit growers, food processors and even concrete makers all benefit from water sensors for accurate, steady and numerous moisture readings.
Monday, October 14, 2013
Partnership Homes in on Regenerative Medicine
Scientists are to advance healing techniques and technologies for animals and humans.
Friday, October 04, 2013
Using Genes to Rescue Animal and Plants from Extinction
With estimates of losing 15 to 40 percent of the world’s species over the next four decades researchers whether science should employ genetic engineering to the rescue.
Friday, September 27, 2013
Scientific News
Genome of 6000-Year-Old Barley Sequenced
Researchers have successfully sequenced the genome of Chalcolithic barley grains for the first time.
Flowers Arrange Themselves for Bees
Study suggests plants can maximise their chances of reproduction by taking advantage of how insects move when they gather nectar.
Improving Wheat Crops in the Field
Agrii, RAGT and the University of Nottingham are developing better disease management and yield production in wheat crops using ASD FieldSpec Handheld 2 portable spectroradiometers.
Unravelling the Roots of Insect’s Waterproof Coating
Researchers have identified the genes that control cuticular lipid production in Drosophila, by performing an RNAi screen and using Direct Analysis in Real Time and GC-MS.
Structural link to Brain Cell Death in Alzheimer's
Study reveals multiple new leads for pursuing potential Alzheimer's treatments
Disentangling the Plant Microbiome
Study says breeding plants, to feed a growing global population, with more beneficial bacteria is far from simple.
Cellular Origin of Skin Cancer Identified
Scientists have identified ‘cell of origin’ in the most common form of skin cancer, and followed the process that leads to tumour growth.
How Plants Sense Electric Fields
An international group of researchers has identified the sensor plants use to sense electric fields. The voltage sensor discovery could contribute to the understanding of how the Ebola virus enters human cells.
Google and EI Partner for Next Generation of Coders
The Earlham Institute's open-source project for visualisation of biological data BioJS acts as mentor organisation for Google Summer of Code 2016.
DNA Production Facility Begins Operation
Scientists mark the opening of the UK's first fully automated DNA construction and modification facility.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!