Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

The Tulip Tree Reveals Mitochondrial Genome of Ancestral Flowering Plant

Published: Tuesday, April 16, 2013
Last Updated: Tuesday, April 16, 2013
Bookmark and Share
The extraordinary level of conservation of the tulip tree mitochondrial genome has redefined our interpretation of evolution of the angiosperms (flowering plants).

This beautiful ‘molecular fossil’ has a remarkably slow mutation rate meaning that its mitochondrial genome has remained largely unchanged since the dinosaurs were roaming the earth.

Evolutionary studies make used of mitochondrial (powerhouse) genomes to identify maternal lineages, for example the human mitochondrial Eve. Among plants, the lack of genomic data from lineages which split away from the main evolutionary branch early on has prevented researchers from reconstructing patterns of genome evolution.

L. tulipifera is native to North America. It belongs to a more unusual group of dicotyledons (plants with two seed leaves) known as magnoliids, which are thought to have diverged early in the evolution of flowing plants.

By sequencing the mitochondrial genome of L. tulipifera, researchers from Indiana University and University of Arkansas discovered that its mitochondrial genome has one of the slowest silent mutation rates (ones which do not affect gene function) of any known genome. Compared to humans the rate is 2000 times slower – the amount of genomic change in a single human generation would take 50,000 years for the tulip tree. The rate is even slower for magnolia trees, taking 130,000 years for the same amount of mitochondrial genomic change.

Ancestral gene clusters and tRNA genes have been preserved and L. tulipifera still contains many genes lost during the subsequent 200 million years of evolution of flowering plants. In fact one tRNA gene is no longer present in any other sequenced angiosperm.

Prof Jeffrey Palmer who led this study explained, “By using the tulip tree as a guide we are able to estimate that the ancestral angiosperm mitochondrial genome contained 41 protein genes, 14 tRNA genes, seven tRNA genes sequestered from chloroplasts, and more than 700 sites of protein editing. Based on this, it appears that the genome has been more-or-less frozen in time for millions and millions of years.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Synthetic Collagen from Maize has Human Properties
BMC Biotechnology reports that for the first time the a1 chain of type 1 collagen has been produced in maize with similar levels of proline hydroxylation to human collagen.
Wednesday, August 31, 2011
A Statistical Assessment of Differences and Equivalences between Genetically Modified and Reference Plant Varieties
Safety assessment of genetically modified organisms is currently often performed by comparative evaluation. An article in the journal BMC Biotechnology describes statistical methods for the assessment of the difference between a genetically modified (GM) plant variety and a conventional non-GM counterpart.
Thursday, February 17, 2011
Scientific News
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Accelerating Forage Breeding to Boost Livestock Productivity
International expert skill-sets in genomics and bioinformatics enhance our capacity to breed improved forages for Africa.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
So Long, Snout
Research helps answer how birds got their beaks.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Algae Nutrient Recycling is a Triple Win
Sandia method cheaper, greener and cuts competition for fertilizer.
Non-Transgenic Rapeseed Product Launched For Chinese Market
Cibus and Rotam have announced a new agreement to cooperate in the development of herbicide-tolerant rapeseed in China.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
BESC Creates Microbe That Bolsters Isobutanol Production
Another barrier to commercially viable biofuels from sources other than corn has fallen with the engineering of a microbe that improves isobutanol yields by a factor of 10.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!