Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

The Tulip Tree Reveals Mitochondrial Genome of Ancestral Flowering Plant

Published: Tuesday, April 16, 2013
Last Updated: Tuesday, April 16, 2013
Bookmark and Share
The extraordinary level of conservation of the tulip tree mitochondrial genome has redefined our interpretation of evolution of the angiosperms (flowering plants).

This beautiful ‘molecular fossil’ has a remarkably slow mutation rate meaning that its mitochondrial genome has remained largely unchanged since the dinosaurs were roaming the earth.

Evolutionary studies make used of mitochondrial (powerhouse) genomes to identify maternal lineages, for example the human mitochondrial Eve. Among plants, the lack of genomic data from lineages which split away from the main evolutionary branch early on has prevented researchers from reconstructing patterns of genome evolution.

L. tulipifera is native to North America. It belongs to a more unusual group of dicotyledons (plants with two seed leaves) known as magnoliids, which are thought to have diverged early in the evolution of flowing plants.

By sequencing the mitochondrial genome of L. tulipifera, researchers from Indiana University and University of Arkansas discovered that its mitochondrial genome has one of the slowest silent mutation rates (ones which do not affect gene function) of any known genome. Compared to humans the rate is 2000 times slower – the amount of genomic change in a single human generation would take 50,000 years for the tulip tree. The rate is even slower for magnolia trees, taking 130,000 years for the same amount of mitochondrial genomic change.

Ancestral gene clusters and tRNA genes have been preserved and L. tulipifera still contains many genes lost during the subsequent 200 million years of evolution of flowering plants. In fact one tRNA gene is no longer present in any other sequenced angiosperm.

Prof Jeffrey Palmer who led this study explained, “By using the tulip tree as a guide we are able to estimate that the ancestral angiosperm mitochondrial genome contained 41 protein genes, 14 tRNA genes, seven tRNA genes sequestered from chloroplasts, and more than 700 sites of protein editing. Based on this, it appears that the genome has been more-or-less frozen in time for millions and millions of years.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Synthetic Collagen from Maize has Human Properties
BMC Biotechnology reports that for the first time the a1 chain of type 1 collagen has been produced in maize with similar levels of proline hydroxylation to human collagen.
Wednesday, August 31, 2011
A Statistical Assessment of Differences and Equivalences between Genetically Modified and Reference Plant Varieties
Safety assessment of genetically modified organisms is currently often performed by comparative evaluation. An article in the journal BMC Biotechnology describes statistical methods for the assessment of the difference between a genetically modified (GM) plant variety and a conventional non-GM counterpart.
Thursday, February 17, 2011
Scientific News
Genome of 6000-Year-Old Barley Sequenced
Researchers have successfully sequenced the genome of Chalcolithic barley grains for the first time.
Flowers Arrange Themselves for Bees
Study suggests plants can maximise their chances of reproduction by taking advantage of how insects move when they gather nectar.
Improving Wheat Crops in the Field
Agrii, RAGT and the University of Nottingham are developing better disease management and yield production in wheat crops using ASD FieldSpec Handheld 2 portable spectroradiometers.
Unravelling the Roots of Insect’s Waterproof Coating
Researchers have identified the genes that control cuticular lipid production in Drosophila, by performing an RNAi screen and using Direct Analysis in Real Time and GC-MS.
Structural link to Brain Cell Death in Alzheimer's
Study reveals multiple new leads for pursuing potential Alzheimer's treatments
Disentangling the Plant Microbiome
Study says breeding plants, to feed a growing global population, with more beneficial bacteria is far from simple.
Cellular Origin of Skin Cancer Identified
Scientists have identified ‘cell of origin’ in the most common form of skin cancer, and followed the process that leads to tumour growth.
How Plants Sense Electric Fields
An international group of researchers has identified the sensor plants use to sense electric fields. The voltage sensor discovery could contribute to the understanding of how the Ebola virus enters human cells.
Google and EI Partner for Next Generation of Coders
The Earlham Institute's open-source project for visualisation of biological data BioJS acts as mentor organisation for Google Summer of Code 2016.
DNA Production Facility Begins Operation
Scientists mark the opening of the UK's first fully automated DNA construction and modification facility.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!