Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Coelacanth Genome Similar to that of Fossils

Published: Thursday, April 18, 2013
Last Updated: Thursday, April 18, 2013
Bookmark and Share
Unexpected insights from a fish with a 300-million-year-old fossil record.

An international team of researchers has decoded the genome of a creature whose evolutionary history is both enigmatic and illuminating: the African coelacanth. A sea-cave dwelling, 5-foot-long fish with limblike fins, the coelacanth was once thought to be extinct. A living coelacanth was discovered off the African coast in 1938, and since then, questions about these ancient-looking fish have loomed large.

Coelacanths today closely resemble the fossilized skeletons of their ancestors of more than 300 million years ago. Its genome confirms what many researchers had long suspected: Genes in coelacanths are evolving more slowly than in other organisms.

“We found that the genes overall are evolving significantly slower than in every other fish and land vertebrate that we looked at,” said Jessica Alföldi, a research scientist at the Broad Institute of Harvard and MIT and co-first author of a paper on the coelacanth genome, which appears in Nature this week. “This is the first time that we’ve had a big enough gene set to really see that.”

Researchers hypothesize that this slow rate of evolution may be because coelacanths simply have not needed to change: They live primarily off the Eastern African coast (a second coelacanth species lives off the coast of Indonesia), at ocean depths where relatively little has changed over the millennia.

“We often talk about how species have changed over time,” said Kerstin Lindblad-Toh, scientific director of the Broad Institute’s vertebrate genome biology group and senior author. “But there are still a few places on earth where organisms don’t have to change, and this is one of them. Coelacanths are likely very specialized to such a specific, non-changing, extreme environment — it is ideally suited to the deep sea just the way it is.”

Because of their resemblance to fossils dating back millions of years, coelacanths today are often referred to as “living fossils” — a term coined by Charles Darwin. But the coelacanth is not a relic of the past brought back to life: It is a species that has survived, reproduced, but changed very little in appearance for millions of years. “It’s not a living fossil; it’s a living organism,” said Alföldi. “It doesn’t live in a time bubble; it lives in our world, which is why it’s so fascinating to find out that its genes are evolving more slowly than ours.”

The coelacanth genome has also allowed scientists to test other long-debated questions. For example, coelacanths possess some features that look oddly similar to those seen only in animals that dwell on land, including “lobed” fins, which resemble the limbs of four-legged land animals (known as tetrapods). Another odd-looking group of fish known as lungfish possesses lobed fins, too. It is probable that one of the ancestral lobed-finned fish species gave rise to the first four-legged amphibious creatures to climb out of the water and up onto land, but until now, researchers could not determine which of the two was the likelier candidate.

In addition to sequencing the full genome — nearly 3 billion “letters” of DNA — from the coelacanth, the researchers also looked at RNA content from the coelacanth (both the African and Indonesian species) and from the lungfish. This information allowed them to compare genes in use in the brain, kidneys, liver, spleen, and gut of lungfish with gene sets from coelacanths and 20 other vertebrate species. Their results suggested that tetrapods are more closely related to lungfish than to the coelacanth.

However, the coelacanth is still a critical organism to study to understand what is often called the water-to-land transition. The lungfish may be more closely related to land animals, but its genome remains inscrutable: At 100 billion letters in length, the lungfish genome is simply too unwieldy for scientists to sequence, assemble, and analyze. The coelacanth’s more modest genome (comparable in length to our own) is yielding valuable clues about the genetic changes that may have allowed tetrapods to flourish on land.

By looking at what genes were lost when vertebrates came on land as well as what regulatory elements — parts of the genome that govern where, when, and to what degree genes are active — were gained, the researchers made several unusual discoveries:

Sense of smell. The team found that many regulatory changes influenced genes involved in smell perception and detecting airborne odors. They hypothesize that as creatures moved from sea to land, they needed new means of detecting chemicals in the environment around them.

Immunity. The researchers found a significant number of immune-related regulatory changes when they compared the coelacanth genome to the genomes of land animals. They hypothesized that these changes may have been part of a response to new pathogens encountered on land.

Evolutionary development. Researchers found several key genetic regions that may have been “evolutionarily recruited” to form tetrapod innovations such as limbs, fingers and toes, and the mammalian placenta. One of these regions, known as HoxD, harbors a particular sequence that is shared across coelacanths and tetrapods. It is likely that this sequence from the coelacanth was co-opted by tetrapods to help form hands and feet.

Urea cycle. Fish get rid of nitrogen by excreting ammonia into the water, but humans and other land animals quickly convert ammonia into less-toxic urea using the urea cycle. Researchers found that the most important gene involved in this cycle has been modified in tetrapods.

The coelacanth genome may hold other clues for researchers investigating the evolution of tetrapods. “This is just the beginning of many analyses on what the coelacanth can teach us about the emergence of land vertebrates, including humans, and, combined with modern empirical approaches, can lend insights into the mechanisms that have contributed to major evolutionary innovations,” said Chris Amemiya, a member of the Benaroya Research Institute and co-first author of the Nature paper. Amemiya is also a professor at the University of Washington.

Sequencing the full coelacanth genome was uniquely challenging for many reasons. Coelacanths are an endangered species, so samples available for research are almost nonexistent. This meant that each sample obtained was precious: Researchers would have “one shot” at sequencing the collected genetic material, according to Alföldi. But the difficulties of obtaining a sample and the challenges of sequencing it also knit the community together.

Although its genome offers some tantalizing answers, the research team anticipates that further study of the fish’s immunity, respiration, physiology, and more will lead to deep insights into how some vertebrates adapted to life on land, while others remained creatures of the sea.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Harvard Licenses Genotyping Platform
Novel approach aids development of drug resistance testing products for HIV.
Tuesday, May 24, 2016
So Long, Snout
Research helps answer how birds got their beaks.
Thursday, August 20, 2015
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Monday, July 27, 2015
Progress in Energy Innovation, Development, and Deployment
As the financial and environmental costs of current-generation energy sources continue to mount, development and implementation of innovative new energy sources have become increasingly important.
Wednesday, May 15, 2013
When Microbes Make the Food
Summer School class looks at role of bacteria, fungi in food.
Friday, August 03, 2012
‘Stealing’ Life’s Building Blocks
Research shows that parasitic flowers take more genes from hosts than was believed.
Tuesday, June 12, 2012
Research on Butterflies Reveals Genetic Sharing
Landmark effort to sequence the genome of a South American butterfly has revealed the key behind its ability to mimic other butterflies.
Monday, May 21, 2012
Scientific News
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Peachy Defense System for Seeds
ETH chemists are developing a new coating method to protect seeds from being eaten by insects. In doing so, they have drawn inspiration from the humble peach and a few of its peers.
Roundup Impacts Gene Expression
Study published on the impact of low-dose toxicity of Roundup weed-killer on gene expression profiles.
Meaningful Part of Maize Genome Defined
FSU-Cornell team show that a small percentage of the maize genome is responsible for 40 percent of a plant’s trait diversity.
Plant Stem Cell Discovery Points to Increased Yields
Braking signals from the leaves tell stem cells to stop proliferating.
Plasma Dose Improves Agricultural Crop Harvests
Researchers at Japan have developed a technique to improve crop yields by treating seeds prior to planting with a safe dose of plasma radiation.
TGAC Installs Largest SGI UV 300 Supercomputer for Life Sciences
The Genome Analysis Centre (TGAC) partners with Global HPC hardware giant SGI to address the most complex problems in genomics analysis.
Carrot Genome Uncovered
Carrot genome paints picture of domestication, could help improve crops.
Flowering Regulation Mechanism Discovered
Monash researchers have discovered a new mechanism that enables plants to regulate their flowering in response to raised temperatures.
Nanoparticles Present Sustainable Way to Grow Food Crops
Nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!