Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cornell Research Helps Meet World's Crop Challenges

Published: Thursday, May 02, 2013
Last Updated: Thursday, May 02, 2013
Bookmark and Share
Two Cornell researchers are world experts in studies of little-known plant transport proteins that may be key to easing ever-growing global food needs.

Leon Kochian and Maria Harrison are two of the 12 plant biologists who have authored a perspectives piece in the May 2 issue of Nature. The article explores how newly discovered plant transport proteins have the potential to help expand global agriculture to better address the challenges of feeding billions of underfed people.

Plant transport proteins carry mineral nutrients and key molecules across cell membranes, which are key targets for developing plants that take up nutrients, transport sugar and are tolerant to salt and aluminum.

For example, Kochian, Cornell adjunct professor of plant biology and director of the U.S. Department of Agriculture’s Robert W. Holley Center for Agriculture and Health at Cornell, has identified a transport protein gene that may be responsible for making such crops as sorghum tolerant to aluminum toxicity in soils, which makes 50 percent of the world’s arable lands unusable for agriculture.

“It’s a big problem,” said Kochian, of aluminum toxicity that stems from acidic soils. “Aluminum is the most abundant metal in the Earth’s crust, but in acidic soils, it gets dissolved as aluminum ions that are very toxic to roots,” he said.

The plant’s roots grow from the tip, and it is this part that needs protection from aluminum ions. Kochian and colleagues have identified a transporter in the plasma membrane of root cells that transports citric acid out of the roots where it binds with aluminum ions in the soil and renders them nontoxic to the plants.

The gene that Kochian and colleagues have discovered appears to control transport of organic compounds, such as citric acid, out of the cell.

“We have funding from international agencies to identify molecular markers for the best alleles [versions] of our aluminum tolerance genes,” said Kochian. By identifying the markers that are in or very close to an aluminum tolerance gene, plant breeders will use molecular breeding techniques to identify whether a breeding line contains the desired gene; this would greatly accelerate the process of breeding new varieties.

Similarly, Maria Harrison, the William H. Crocker Professor at the Boyce Thompson Institute for Plant Research on Cornell’s Ithaca campus, has discovered transporters in plants that enable them acquire phosphorus, a nutrient vital for plant growth and yield. Lack of phosphorus in forms accessible to plants limits crop production on close to 70 percent of the world’s agricultural soils. As a result, farmers add fertilizers produced with nonrenewable rock phosphate, reserves of which will be depleted within perhaps 70 years.

While researchers have shown that transporters allow plants to acquire phosphorous from soil directly, Harrison has also studied transporters that work during a symbiotic relationship between plants and soil fungi, called mycorrhizae.  Fungi living in symbiotic compartments in roots capture phosphate from the soil and make these ions accessible for plant phosphate transporters to deliver into root cells. Harrison’s work will help breeders develop plants that can acquire phosphate more efficiently from the soil.

Lead author Julian Schroeder, professor of biology at University of California-San Diego, believes these discoveries require more attention and funding to meet the world’s future food challenges.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
Thursday, August 28, 2014
Pest Attacks Can Lead to Bigger Crop Yields
New project receive three-year funding of $498,000 from USDA.
Thursday, June 26, 2014
Algal Genes May Boost Efficiency, Yield in Staple Crops
New research has taken a step toward employing genes from blue-green algae to improve staple crop photosynthesis.
Wednesday, May 21, 2014
Study to Focus on Rice Genes, Yield and Climate
Cornell researchers received a $600,000 grant from the U.S. Department of Agriculture (USDA) to study relationships among rice genetics, crop yields and climate.
Thursday, May 01, 2014
New Alfalfa Variety Resists Ravenous Local Pest
The new variety has some resistance against the alfalfa snout beetle which has ravaged alfalfa fields.
Monday, April 28, 2014
Predators Delay Pest Resistance to Bt Crops
Crops genetically modified with the bacterium Bt(Bacillus thuringiensis) produce proteins that kill pest insects.
Monday, March 10, 2014
Shark, Human Proteins are Surprisingly Similar
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.
Friday, December 06, 2013
Surprises Discovered in Decoded Kiwifruit Genome
DNA sequence of the kiwifruit has many genetic similarities between its 39,040 genes and other plant species, including potatoes and tomatoes.
Tuesday, October 22, 2013
Produce Perfect: Biotech Sweet Corn goes Unblemished
With the kernel-loving earworm, producing unblemished ears of sweet corn is difficult.
Monday, October 14, 2013
New Micro Water Sensor Can Aid Growers
Crop growers, wine grape and other fruit growers, food processors and even concrete makers all benefit from water sensors for accurate, steady and numerous moisture readings.
Monday, October 14, 2013
Partnership Homes in on Regenerative Medicine
Scientists are to advance healing techniques and technologies for animals and humans.
Friday, October 04, 2013
Using Genes to Rescue Animal and Plants from Extinction
With estimates of losing 15 to 40 percent of the world’s species over the next four decades researchers whether science should employ genetic engineering to the rescue.
Friday, September 27, 2013
Senator to Tout Cornell Food Safety, Dairy Expertise to Feds
Cornell University is positioned to be a national center of excellence in dairy and food safety.
Monday, September 09, 2013
'Fountain of Youth’ for Leaves Discovered
A team has identified an enzymatic fountain of youth that slows the process of leaf death.
Friday, August 23, 2013
Scientific News
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Faster, Better, Cheaper: a New Method to Generate Extended Data for Genome Assemblies
The Genome Analysis Centre have developed a new library construction method for genome sequencing that can simultaneously construct up to 12 size-selected long mate pair (LMP) or ‘jump’ libraries ranging in sizes from 1.7kb to 18kb with reduced DNA input, time and cost.
New Research Advances Genetic Studies in Wildlife Conservation
‘Next-gen’ DNA sequencing of non-invasively collected hair expands field of conservation genetics.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!