Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cleaner Energy, Warmer Climate?

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
MIT researchers explore the possible consequences of expanding biofuels.

The growing global demand for energy, combined with a need to reduce emissions and lessen the effects of climate change, has increased focus on cleaner energy sources. But what unintended consequences could these cleaner sources have on the changing climate?

Researchers at MIT now have some answers to that question, using biofuels as a test case. Their study, recently released in Geophysical Research Letters, found that land-use changes caused by a major ramp-up in biofuel crops — enough to meet about 10 percent of the world’s energy needs — could make some regions even warmer.

“Because all actions have consequences, it’s important to consider that even well-intentioned actions can have unintended negative consequences,” says Willow Hallgren, the lead author of the study and a research associate at MIT’s Joint Program on the Science and Policy of Global Change. “It’s easy to look at a new, cleaner energy source, see how it will directly improve the climate, and stop there without ever considering all the ramifications. But when attempting to mitigate climate change, there’s more to consider than simply substituting out fossil fuels for a cleaner source of energy.”

Hallgren and her colleagues explored some of those consequences in considering two scenarios: one where more forests are cleared to grow biofuel crops, and one where forests are maintained and cropland productivity is intensified through the use of fertilizers and irrigation.

In both cases, the researchers found that at a global scale, greenhouse-gas emissions increase — in the form of more carbon dioxide when CO2-absorbing forests are cut, and in the form of more nitrous oxide from fertilizers when land use is intensified. But this global warming is counterbalanced when the additional cropland reflects more sunlight, causing some cooling. Additionally, an increase in biofuels would replace some fossil fuel-based energy sources, further countering the warming.

While the effects of large-scale expansion of biofuels seem to cancel each other out globally, the study does point to significant regional impacts — in some cases, far from where the biofuel crops are grown. In the tropics, for example, clearing of rainforests would likely dry the climate and cause warming, with the Amazon Basin and central Africa potentially warming by 1.5 degrees Celsius.

This tropical warming is made worse with more deforestation, which also causes a release of carbon dioxide, further contributing to the warming of the planet. Meanwhile, Arctic regions might generally experience cooling caused by an increase in reflectivity from deforestation.

“Emphasizing changes not only globally, but also regionally, is vitally important when considering the impacts of future energy sources,” Hallgren says. “We’ve found the greatest impacts occur at a regional level.”

From these results, the researchers found that land-use policies that permit more extensive deforestation would have a larger impact on regional emissions and temperatures. Policies that protect forests would likely provide more tolerable future environmental conditions, especially in the tropics.

David McGuire, a professor of ecology at the University of Alaska at Fairbanks, says these findings are important for those trying to implement mitigation policies.

“Hallgren et al. caution that society needs to further consider how biofuels policies influence ecosystem services to society, as understanding the full dimension of these effects should be taken into consideration before deciding on policies that lead to the implementation of biofuels programs,” McGuire says.

He adds that he finds Hallgren’s incorporation of reflectivity and energy feedbacks unique among studies on the climate impacts of biofuels.

Beyond the climate

While Hallgren focuses specifically on the climate implications of expanded use of biofuels, she admits there are many other possible consequences — such as impacts on food supplies and prices.

A group of her colleagues explored the economic side of biofuel expansion as part of a study released last year in Environmental Science & Technology — a paper that was recognized as that journal’s Best Policy Analysis Paper of 2012.

The team, led by Joint Program on Global Change co-director John Reilly, modeled feedbacks among the atmosphere, ecosystems and the global economy. They found that the combination of a carbon tax, incentives for reforestation and the addition of biofuels could nearly stabilize the climate by the end of the century; increased biofuels production alone could cut fossil-fuel use in half by 2100.

But just as Hallgren found trade-offs when she dug deeper, so did Reilly and his team of researchers.

“The environmental change avoided by reducing greenhouse-gas emissions is substantial and actually means less land used for crops,” Reilly says. This leads to substantial rises in food and forestry prices, he says, with food prices possibly rising by more than 80 percent.

Hallgren says, “There is clearly no one simple cause and effect when it comes to our climate. The impacts we see — both to the environment and the economy — from adding a large supply of biofuels to our energy system illustrate why it is so important to consider all factors so that we’ll know what we’re heading into before making a change.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Global Reductions in Mercury Emissions Should Lead to Billions in Economic Benefits for U.S.
Benefits from international regulations may double those of domestic policy.
Monday, January 04, 2016
“Kill Switches” Shut Down Engineered Bacteria
Synthetic biology technique could make it safer to put engineered microbes to work outside of the lab.
Monday, December 14, 2015
Longstanding Problem Put to Rest
Proof that a 40-year-old algorithm for comparing genomes is the best possible will come as a relief to computer scientists.
Thursday, June 11, 2015
Secret of Efficient Photosynthesis is Decoded
MIT researchers find that the key to purple bacteria’s light-harvesting prowess lies in highly symmetrical molecules.
Wednesday, May 15, 2013
Cheaters Lessen Colony Survival Under Stress in Yeast Experiment
MIT researchers find that high ratio of freeloaders makes it more likely colony will die from sudden shock to environment.
Thursday, May 02, 2013
Engineering Cells for more Efficient Biofuel Production
Yeast research takes a step toward production of alternatives to gasoline.
Tuesday, February 19, 2013
Newfound Gene May Help Bacteria Survive In Extreme Environments
Resulting microbial lipids may also signify oxygen dips in Earth’s history.
Thursday, July 26, 2012
Scientific News
New Method Promises to Speed Development of Food Crops
A new study addresses a central challenge of transgenic plant development: how to reliably evaluate whether genetic material has been successfully introduced.
Where Cancer Cells May Begin
Scientists use fruit fly genetics to understand how things could go wrong in cancer.
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Bacteria Attack Lignin with Enzymatic Tag Team
Team from Rice, University of Wisconsin-Madison shows how nature handles lignin.
Milestone Resource in Wheat Research Now Available for Download
Leading on from The Genome Analysis Centre’s (TGAC) previous announcement of their new bread wheat genome assembly, the landmark resource is now publically available to download at the European Bioinformatics Institute’s (EMBL-EBI) Ensembl database for full analysis.
Nano-Reactor for the Production of Hydrogen Biofuel
Combining bacterial genes and virus shell creates a highly efficient, renewable material used in generating power from water.
Cleaning Wastewater with Pond Scum
A blob of algae scooped from a fountain on South Street almost two years ago, has seeded a crop of the green stuff that Drexel University researchers claim is more effective at treating wastewater than many of the processes employed in municipal facilities today.
Global Reductions in Mercury Emissions Should Lead to Billions in Economic Benefits for U.S.
Benefits from international regulations may double those of domestic policy.
A Worm with Five Faces
Max Planck scientists discover new roundworm species on Réunion.
A Gene for New Species is Identified
A University of Utah-led study identified a long-sought “hybrid inviability gene” responsible for dead or infertile offspring when two species of fruit flies mate with each other.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!