Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genome of Lotus May Hold Anti-Aging Secrets

Published: Monday, May 13, 2013
Last Updated: Monday, May 13, 2013
Bookmark and Share
The "sacred lotus" is believed to have a powerful genetic system that repairs genetic defects.

The scientists sequenced more than 86 percent of the nearly 27,000 genes of the plant, Nelumbo nucifera, which is revered in China and elsewhere as a symbol of spiritual purity and longevity.

"The lotus genome is an ancient one, and we now know its ABCs," said Jane Shen-Miller, one of three corresponding authors of the research and a senior scientist with UCLA's Center for the Study of Evolution and the Origin of Life. "Molecular biologists can now more easily study how its genes are turned on and off during times of stress and why this plant's seeds can live for 1,300 years. This is a step toward learning what anti-aging secrets the sacred lotus plant may offer."

The research was published today in the journal Genome Biology.

Shen-Miller said the lotus' genetic repair mechanisms could be very useful if they could be transferred to humans or to crops — such as rice, corn and wheat — whose seeds have life spans of only a few years. "If our genes could repair disease as well as the lotus' genes, we would have healthier aging. We need to learn about its repair mechanisms, and about its biochemical, physiological and molecular properties, but the lotus genome is now open to everybody."

In the early 1990s, Shen-Miller led a UCLA research team that recovered a viable lotus seed that was almost 1,300 years old from a lake bed in northeastern China. It was a remarkable discovery, given that many other plant seeds are known to remain viable for just 20 years or less.

In 1996, Shen-Miller led another visit to China. Working in Liaoning province, her team collected about 100 lotus seeds - most were approximately 450 to 500 years old - with help from local farmers. To the researchers' surprise, more than 80 percent of the lotus seeds that were tested for viability germinated. That indicated that the plant must have a powerful genetic system capable of repairing germination defects arising from hundreds of years of aging, Shen-Miller said.

Understanding how the lotus repair mechanism works — and its possible implications for human health — is essentially a three-step process, said Crysten Blaby-Haas, a UCLA postdoctoral scholar in chemistry and biochemistry and co-author of the research. "Knowing the genome sequence was step one. Step two would be identifying which of these genes contributes to longevity and repairing genetic damage. Step three would be potential applications for human health, if we find and characterize those genes. The genome sequence will aid in future analysis.

"The next question is what are these genes doing, and the biggest question is how they contribute to the longevity of the lotus plant and its other interesting attributes," Blaby-Haas said. "Before this, when scientists studied the lotus, it's almost as if they were blind; now they can see. Once you know the repertoire of genes, you have a foundation to study their functions."

The genome sequence reveals that, when compared with known gene sequences of dozens of other plants, the lotus bears the closest resemblance to the ancestor of all eudicots, a broad category of flowering plants that includes the apple, peanut, tomato, cotton, cactus and tobacco plants.

The lotus forms a separate branch of the eudicot family tree; it lacks a signature triplication of the genome seen in most other members of this family, said Ray Ming, professor of plant biology at the University of Illinois at Urbana-Champaign, who led the analysis with Shen-Miller and Shaohua Li, director of the Wuhan Botanical Garden at the Chinese Academy of Sciences.

Whole-genome duplications — the doubling or tripling of an organism's entire genetic endowment - are important events in plant evolution, Ming said. Some of the duplicated genes retain their original structure and function, and others gradually adapt and take on new functions. If those changes are beneficial, the genes persist; if they're harmful, they disappear from the genome.

Many agricultural crops, including watermelon, sugar cane and wheat, benefit from genome duplications, said Robert VanBuren, a graduate student in Ming's laboratory and a co-author of the study.

The genome of most other eudicots triplicated 100 million years ago, but the researchers found that the lotus experienced a separate, whole-genome duplication about 65 million years ago.

Shen-Miller said experts in aging and stress will be eager to study the lotus genes because of the plant's extraordinary longevity. "The lotus can age for 1,000 years, and even survives freezing weather," she said. "Its genetic makeup can combat stress. Most crops don't have a very long shelf life. But starches and proteins in lotus seeds remain palatable and actively promote seed germination, even after centuries of aging."

The lotus' unusual genetics give it some unique survival skills. Its leaves repel grime and water, its flowers generate heat to attract pollinators and the coating of lotus fruit is covered with antibiotics and wax that ensure the viability of the seed it contains.

Blaby-Haas studied lotus gene families potentially involved in how plants metabolize metals. One family, in particular, caught her attention. "We found that the lotus has 16 of these genes, while most plants have only one or two," Blaby-Haas said. "Either this is an extremely important protein in the lotus, which is why it needs so many copies, or the duplication allows a novel function to arise; we don't know which is correct."

These genes may be related to the unique environment of the lotus, which grows with its roots submerged in water, she said. (Lotus was a land plant that adapted to the water.)

The sacred lotus is known from the geologic record as early as 135 million years ago, when dinosaurs roamed the Earth, Shen-Miller said. It has been grown for at least 4,000 years in China, where every part of the plant has long been used in food and medicine.

Co-author Sabeeha Merchant is a UCLA professor of biochemistry whose laboratory studies the biology of metals like iron, copper and zinc. Other co-authors include J. William Schopf, director of UCLA's Center for the Study of Evolution and the Origin of Life and a professor in the department of Earth and space sciences, who studied the geology of the lotus burial lake; and Steven Karpowicz, a former UCLA graduate student in Merchant's laboratory who is currently at Eastern Oregon University.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
International Fruit Pest Targeted by Genomic Research
The spotted wing drosophila is itself being targeted, thanks to groundbreaking genome sequencing.
Friday, December 06, 2013
DNA Sequencing Lifts Veil on Wine’s Microbial Terroir
It’s widely accepted that terroir — the unique blend of a vineyard’s soils, water and climate — sculpts the flavor and quality of wine.
Wednesday, November 27, 2013
Grapevine Virus Screening Saves Napa-Sonoma $60M
Providing disease-free grapevines and rootstock to California’s famed North Coast wine region is money-wise to the tune of more than $60 million annually.
Tuesday, November 19, 2013
New Cattle Virus Identified by Genome Sequencing
A new cow virus that causes neurologic symptoms reminiscent of mad cow disease has been identified and its genome sequenced by a team of researchers.
Thursday, August 15, 2013
More Accurate Model of Climate Change’s Effect on Soil
Scientists have developed a new computer model to measure global warming's effect in soil worldwide that accounts for how bacteria and fungi in soil control carbon.
Friday, August 02, 2013
Predicting how Insects, Plants Interact
Butterfly and moth larvae feeding on native plants will extend their diet to newly introduced non-native plants, but which ones?
Tuesday, July 23, 2013
Gene Discovery May Halt Disease that Threatens Wheat
Researchers have identified a gene that enables resistance to a new race, or strain, of stem rust, a disease threatening global food security.
Monday, July 01, 2013
Reforms Could Boost Use of Land Conservation Banks
California legislators have enacted the state's first conservation banking law, based on a pioneering program launched 18 years ago.
Tuesday, June 11, 2013
Scientists Find Compounds that Boost Oil Output of Algae
Chemists have found several compounds that can boost oil production by green microscopic algae, a potential source of biodiesel and other "green" fuels.
Tuesday, April 09, 2013
Conference Sets Agenda for Climate-smart Ag Research
An action-oriented scientific agenda for tackling global climate change and its impacts on agriculture emerged from the international, three-day Climate-Smart Agriculture Conference.
Tuesday, March 26, 2013
Study Reveals Genetic Diversity of Genes in Peppers
Researchers have developed a “family tree” of sorts for peppers and characterized the diversity of genes found in a collection of common cultivated pepper varieties.
Monday, February 18, 2013
Farmers and Environment Profit from New Website
University of California Cooperative Extension is rolling out a new website for farmers that will help them save money and protect the environment.
Friday, February 01, 2013
Beyond Manifesto: How to Change the Food System
Mark Bittman used the occasion of New Year’s Day to throw down the gauntlet for real and permanent change to the U.S. agricultural system.
Friday, January 11, 2013
Engineered Bacteria Make Fuel from Sunlight
Chemists have engineered blue-green algae to grow chemical precursors for fuels and plastics — the first step in replacing fossil fuels as raw materials for the chemical industry.
Wednesday, January 09, 2013
Scientific News
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!