Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Discovers New Enzyme That Could Help Turn Waste into Biofuel

Published: Thursday, June 06, 2013
Last Updated: Thursday, June 06, 2013
Bookmark and Share
Enzyme to create liquid fuel from wood could be produced in the same way that enzymes for biological washing detergents are made.

Scientists have discovered a new enzyme that could prove an important step in the quest to turn waste (such as paper, scrap wood and straw) into liquid fuel.

To do this they turned to the destructive power of tiny marine wood-borers called ‘gribble’, which have been known to destroy seaside piers, and the intense X-rays available at Diamond.

Using advanced biochemical analysis and X-ray imaging techniques, researchers from the University of York, University of Portsmouth and the National Renewable Energy Laboratory in the USA have determined the structure and function of a key enzyme used by gribble to break down wood.

The findings, published in PNAS, will help the researchers to reproduce the enzymes effects on an industrial scale in a bid to create sustainable liquid biofuels.

To create liquid fuel from woody biomass, such as wood and straw, the polysaccharides (sugar polymers) that make up the bulk of these materials have to be broken down into simple sugars. These are then fermented to produce liquid biofuels. This is a difficult process and making biofuels in this way is currently too expensive.

To find more effective and cheaper ways of converting wood to liquid fuel, scientists are studying organisms that can break down wood in hope of developing industrial processes to do the same.

Gribble are of interest as they are voracious consumers of wood and have all the enzymes needed for its digestion. The enzymes attach to a long chain of complex sugars and chop off small soluble molecules that can be easily digested or fermented.

The researchers identified a cellulase (an enzyme that converts cellulose into glucose) from gribble that has some unusual properties and used the latest imaging technology to understand more about it.

The research team leader, Professor Simon McQueen-Mason, from the Centre for Novel Agricultural Products at the University of York, explains: “Enzymes are proteins that serve as catalysts, in this case one that degrades cellulose. Their function is determined by their three-dimensional shape, but these are tiny entities that cannot be seen with high power microscopes. Instead, we make crystals of the proteins, where millions of copies of the protein are arrayed in the same orientation.”

This information will help the researchers to design more robust enzymes for industrial applications. While similar cellulases have been found in wood-degrading fungi, the enzyme from gribble shows some important differences.

In particular, the gribble cellulase is extremely resistant to aggressive chemical environments and can work in conditions seven times saltier than sea water.

Being robust in difficult environments means that the enzymes can last much longer when working under industrial conditions and so less enzyme will be needed.

Professor McQueen-Mason explained: “This is the first functionally characterized animal enzyme of this type and provides us with a previously undiscovered picture of how they work.

“While this enzyme looks superficially similar to equivalent ones from fungi, closer inspection highlights structural differences that give it special features, for example, the enzyme has an extremely acidic surface and we believe that this is one of the features that contributes to its robustness.”

The ultimate aim is to reproduce the effect of this enzyme on an industrial scale. Rather than trying to get the cellulase from gribble, the team have transferred the genetic blueprint of this enzyme to an industrial microbe that can produce it in large quantities, in the same way that enzymes for biological washing detergents are made. By doing this they hope to cut the costs of turning woody materials into biofuels.

Professor McQueen-Mason added: “The robust nature of the enzymes makes it compatible for use in conjunction with sea water, which would lower the costs of processing. Lowering the cost of enzymes is seen as critical for making biofuels from woody materials cost effective. Its robustness would also give the enzymes a longer working life and allow it to be recovered and re-used during processing.”

The work is part of the BBSRC Sustainable Bioenergy Centre (BSBEC), a £24M investment that brings together six world-class research programmes to develop the UK's bioenergy research capacity.

Funding from a BBSRC USA Partnering Award was instrumental in forming a highly synergistic collaboration with the US DOE funded research team at NREL.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
Custom Tuning Knobs to Turn Off Any Gene
Factory managers can improve productivity by telling workers to speed up, slow down or stop doing tangential tasks while assembling widgets. Unfortunately for synthetic biologists attempting to produce pharmaceuticals, microbes don’t respond to direction like human personnel.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
New Method Promises to Speed Development of Food Crops
A new study addresses a central challenge of transgenic plant development: how to reliably evaluate whether genetic material has been successfully introduced.
Where Cancer Cells May Begin
Scientists use fruit fly genetics to understand how things could go wrong in cancer.
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Bacteria Attack Lignin with Enzymatic Tag Team
Team from Rice, University of Wisconsin-Madison shows how nature handles lignin.
Milestone Resource in Wheat Research Now Available for Download
Leading on from The Genome Analysis Centre’s (TGAC) previous announcement of their new bread wheat genome assembly, the landmark resource is now publically available to download at the European Bioinformatics Institute’s (EMBL-EBI) Ensembl database for full analysis.
Nano-Reactor for the Production of Hydrogen Biofuel
Combining bacterial genes and virus shell creates a highly efficient, renewable material used in generating power from water.
Cleaning Wastewater with Pond Scum
A blob of algae scooped from a fountain on South Street almost two years ago, has seeded a crop of the green stuff that Drexel University researchers claim is more effective at treating wastewater than many of the processes employed in municipal facilities today.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!