Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

How Do You Feed 9 Billion People?

Published: Wednesday, June 12, 2013
Last Updated: Wednesday, June 12, 2013
Bookmark and Share
An international team of scientists has developed crop models to better forecast food production to feed a growing population in the face of climate change.

In a paper appearing in Nature Climate Change, members of the Agricultural Model Intercomparison and Improvement Project unveiled an all-encompassing modeling system that integrates multiple crop simulations with improved climate change models. AgMIP’s effort has produced new knowledge that better predicts global wheat yields while reducing political and socio-economic influences that can skew data and planning efforts, said Bruno Basso, Michigan State University ecosystem scientist and AgMIP member.

“Quantifying uncertainties is an important step to build confidence in future yield forecasts produced by crop models,” said Basso, with MSU’s geological sciences department and Kellogg Biological Station. “By using an ensemble of crop and climate models, we can understand how increased greenhouse gases in the atmosphere, along with temperature increases and precipitation changes, will affect wheat yield globally.”

The improved crop models can help guide the world’s developed and developing countries as they adapt to changing climate and create policies to improve food security and feed more people, he added.

Basso, part of MSU’s Global Water Initiative, and his team of researchers developed the System Approach for Land-Use Sustainability model. SALUS is a new generation crop tool to forecast crop, soil, water, nutrient conditions in current and future climates. It also can evaluate crop rotations, planting dates, irrigation and fertilizer use and project crop yields and their impact on the land.

SALUS was initially designed by Joe Ritchie, MSU emeritus distinguished professor. Basso continued Ritchie’s work and added new features to better predict the impact of agronomic management on crop yield over space and time.

“We can change the scenarios, run them simultaneously and compare their outcomes,” Basso said. “It offers us a great framework to easily compare different land-management approaches and select the most efficient strategies to increase crop yield and reduce environmental impact such as nitrate leaching and greenhouse gas emission.”

For the study, the team looked at simulated yield from 27 different wheat crop models. Through SALUS, Basso forecasted the impact of changes in temperature, precipitation and CO2 emissions on wheat yield from contrasting environment across the planet.

SALUS has been employed in several other projects monitoring grain yield and water use in water-sensitive areas, such as the Ogallala aquifer (spanning from South Dakota to Texas), Siberia, India and Africa.

“I have the ambitious goal to enhance scientific knowledge for living in a better world, and hopefully with less poverty and enough food for the planet,” Basso said.

The research was funded in part by the U.S. Department of Agriculture and the United Kingdom’s Department for International Development.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

MSU to Lead $6.5 Million Research on Disease Resistance in Cucurbits
A national team of 20 scientists led by Michigan State University has been awarded $6.5 million grant to accelerate the development of disease-resistant cucurbit crops through leveraging applied genomics.
Wednesday, October 07, 2015
Perennial Biofuel Crops’ Water Consumption Similar to Corn
A recent study looks at how efficiently “second-generation” biofuel crops—perennial, non-food crops such as switchgrass or native grasses—use rainwater and how these crops affect overall water balance.
Wednesday, July 08, 2015
New, Fossil-fuel-free Process Makes Biodiesel Sustainable
A new fuel-cell concept, developed by a Michigan State University researcher, will allow biodiesel plants to eliminate the creation of hazardous wastes while removing their dependence on fossil fuel from their production process.
Wednesday, May 21, 2014
MSU Leads Largest Soil DNA Sequencing Effort
Study also created a new analytic approach, which makes interpreting the data much easier.
Thursday, March 13, 2014
Hormone could boost plant immune systems
The discovery of a hormone acting like molecular glue could hold a key to bolstering plant immune systems and understanding how plants cope with environmental stress.
Tuesday, October 12, 2010
Researchers discover mechanism protecting plants against freezing
MSU biochemists helps explain how plants protect themselves from freezing temperatures and could lead to discoveries related to plant tolerance for drought and other extreme conditions.
Thursday, September 02, 2010
Scientific News
Ancestors of Land Plants Were Wired to Make the Leap to Shore
When the algal ancestor of modern land plants made the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.
Photosynthesis Gene Could Help Crops Grow in Adverse Conditions
A gene that helps plants to remain healthy during times of stress has been identified by researchers at Oxford University.
Pancreatic Cancer Stem Cells Could be "Suffocated" by Anti-diabetic Drug
A new study shows that pancreatic cancer stem cells (PancSCs) are virtually addicted to oxygen-based metabolism, and could be “suffocated” with a drug already used to treat diabetes.
Scientists Learn How to Predict Plant Size
VIB and UGent scientists have developed a new method which allows them to predict the final size of a plant while it is still a seedling.
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Nanoporous Gold Sponge Makes Pathogen Detector
Sponge-like nanoporous gold could be key to new devices to detect disease-causing agents in humans and plants, according to UC Davis researchers.
Genetic Manipulation for Algal Biofuel Production
Studies of the genes involved in oil synthesis in microalgae allow scientists to use a gene promoter to increase algal production of triacylglycerols, which in turn enhances potential biofuel yields.
Phosphorous Fertilizer
UD researchers identify behaviors of nanoparticle that shows promise as nanofertilizer.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos