Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

BioCision Announces Two New U.S. Patents for Thermo-Conductive Products

Published: Thursday, June 20, 2013
Last Updated: Thursday, June 20, 2013
Bookmark and Share
New patents awarded for CoolSink® Plate Modules and ThermalTray™ Platforms.

BioCision has announced the issuance of new patents by the U.S. Patent Office that apply to two of the company’s thermo-conductive products developed to standardize sample handling to ensure the consistency of test conditions and accuracy of results in common laboratory procedures.

Patent number 8,388,912 covers CoolSink® Plate Modules, which provide a solid, sturdy interface between laboratory sample plates and a heat sink, such as ice, or a heat source.

The modules are made of a thermo-conductive alloy that maintains an even temperature across all wells in the plate, eliminating any “edge effect” where content from the wells close to the perimeter of the plate change temperature more rapidly than those in the center of the plate.

This helps maintain samples at a desired temperature while keeping them dry and sterile, which are optimal conditions for ELISA, multiplex immunoassays, enzyme assays, and cell washing steps.

In addition, BioCision’s ThermalTray™ Platforms were awarded patent number 8,460,621. The platforms support sample racks or plates in liquid and semi-solid heat sinks and sources such as melting ice, water baths, and liquid nitrogen.

Eliminating direct contact between a sample tube or plate and melting ice or bath water protects against potential water-borne contaminants.

The platforms are made of a thermo-conductive alloy, assisting in the transfer of heat between samples and a temperature source.

“These new patents reflect the innovation and new opportunities to improve sample standardization that our products represent,” said Rolf Ehrhardt, MD, PhD, BioCision CEO.

Ehrhardt continued, “This patent protection provides significant support for our continuing efforts to help research institutions in the biotechnology, pharmaceutical, clinical, diagnostic, academic, and government scientific communities to set entirely new standards for performance in sample handling.”

Ensuring reproducible temperature profiles and standardizing temperature-sensitive lab procedures are essential goals in a wide array of scientific disciplines, including cell and tissue culture, cryopreservation, histology, immunohistochemistry, virus and bacterial research, molecular biology, cell therapy, pharmaceutical manufacturing, biofuels research and many others.

Advances in technology to control temperature in sample handling can improve accuracy of test results, which can have a direct impact on diagnosis and patient outcomes.

In addition, improvements in sample standardization can improve the ability of researchers around the world to replicate important research results.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Ancestors of Land Plants Were Wired to Make the Leap to Shore
When the algal ancestor of modern land plants made the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.
Photosynthesis Gene Could Help Crops Grow in Adverse Conditions
A gene that helps plants to remain healthy during times of stress has been identified by researchers at Oxford University.
Pancreatic Cancer Stem Cells Could be "Suffocated" by Anti-diabetic Drug
A new study shows that pancreatic cancer stem cells (PancSCs) are virtually addicted to oxygen-based metabolism, and could be “suffocated” with a drug already used to treat diabetes.
Scientists Learn How to Predict Plant Size
VIB and UGent scientists have developed a new method which allows them to predict the final size of a plant while it is still a seedling.
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Nanoporous Gold Sponge Makes Pathogen Detector
Sponge-like nanoporous gold could be key to new devices to detect disease-causing agents in humans and plants, according to UC Davis researchers.
Genetic Manipulation for Algal Biofuel Production
Studies of the genes involved in oil synthesis in microalgae allow scientists to use a gene promoter to increase algal production of triacylglycerols, which in turn enhances potential biofuel yields.
Phosphorous Fertilizer
UD researchers identify behaviors of nanoparticle that shows promise as nanofertilizer.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos