Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genome of 700,000-Year-Old Horse Sequenced

Published: Thursday, June 27, 2013
Last Updated: Thursday, June 27, 2013
Bookmark and Share
The oldest genome so far from a prehistoric creature has been sequenced by an international team.

The team, which included Dr Jakob Vinther of the University of Bristol, sequenced and analysed short pieces of DNA molecules preserved in bone-remnants from a horse frozen for the last 700,000 years in the permafrost of Yukon, Canada.

By tracking the genomic changes that transformed prehistoric wild horses into domestic breeds, the researchers have revealed the genetic make-up of modern horses with unprecedented detail.  Their findings are published today in Nature.

DNA molecules can survive in fossils well after an organism dies, not as whole chromosomes but as short pieces that could be assembled back together, like a puzzle.  Sometimes enough molecules survive so that the full genome sequence of an extinct species could be resurrected and over the past few years, the full genome sequence of a few ancient humans and archaic hominins has been characterized – but so far, none dated back more than 70,000 years.  Now Dr Ludovic Orlando and Professor Eske Willerslev from Copenhagen's Centre for GeoGenetics and colleagues have beaten this DNA-record by about 10 times.

Sequencing the first genome from the Middle Pleistocene was by no means straightforward and involved collaboration between researchers from Denmark, China, Canada, the USA, Switzerland, the UK, Norway, France, Sweden and Saudi Arabia.

Dr Vinther's contribution to the study involved looking at the amino acid composition of the bone with a Time of Flight Secondary Ion Mass Spectroscope (TOF-SIMS).  This analysis revealed the presence of abundant secondary ions characteristic of amino-acid peptides, particularly glycine, proline and alanine.  These amino acids are characteristic of collagen which suggested that proteins had survived in situ.

Dr Orlando said: "We first got excited when we detected the signature of amino-acids that suggested proteins had survived.  We got more excited when we proved able to directly sequence collagen peptides.  When we detected blood proteins, it really started looking promising because those are barely preserved.  At that stage, it could well be that ancient DNA could also be preserved."

And indeed DNA was present – in a tiny amount.  Using Helicos true Single DNA Molecule Sequencing, the researchers managed to identify molecular preservation niches in the bone and experimental conditions that enabled finishing the full genome sequence.

Sequencing the genome allowed the scientists to track major genomic changes over the last 700,000 years of evolution of the horse lineage.  By comparing the genome in the 700,000-year-old horse with the genome of a 43,000-year-old horse, six present day horses and the donkey, they found that  the last common ancestor of all modern equids was living about 4.0-4.5 million years ago.  Therefore, the evolutionary radiation underlying the origin of horses, donkeys and zebras reaches back in time twice as long as previously thought.

Professor Willerslev said: "The results of the studies and the applied techniques open up new doors for the exploration of prehistoric living creatures.  Now with genomics and proteomics, we can reach ten times further back in time compared to before.  And new knowledge about the horse’s evolutionary history has been added – a history which is considered as a classical example in evolutionary biology and a topic which is taught in high schools and universities."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

£1.1 Million Boost for Synthetic Biology Research in Bristol
University of Bristol scientists have been awarded a £1.1 million share of the Biotechnology and Biological Sciences Research Council (BBSRC)'s strategic Longer and Larger Awards in Synthetic Biology.
Monday, November 12, 2012
Scientific News
New Method Promises to Speed Development of Food Crops
A new study addresses a central challenge of transgenic plant development: how to reliably evaluate whether genetic material has been successfully introduced.
Where Cancer Cells May Begin
Scientists use fruit fly genetics to understand how things could go wrong in cancer.
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Bacteria Attack Lignin with Enzymatic Tag Team
Team from Rice, University of Wisconsin-Madison shows how nature handles lignin.
Milestone Resource in Wheat Research Now Available for Download
Leading on from The Genome Analysis Centre’s (TGAC) previous announcement of their new bread wheat genome assembly, the landmark resource is now publically available to download at the European Bioinformatics Institute’s (EMBL-EBI) Ensembl database for full analysis.
Nano-Reactor for the Production of Hydrogen Biofuel
Combining bacterial genes and virus shell creates a highly efficient, renewable material used in generating power from water.
Cleaning Wastewater with Pond Scum
A blob of algae scooped from a fountain on South Street almost two years ago, has seeded a crop of the green stuff that Drexel University researchers claim is more effective at treating wastewater than many of the processes employed in municipal facilities today.
Global Reductions in Mercury Emissions Should Lead to Billions in Economic Benefits for U.S.
Benefits from international regulations may double those of domestic policy.
A Worm with Five Faces
Max Planck scientists discover new roundworm species on Réunion.
A Gene for New Species is Identified
A University of Utah-led study identified a long-sought “hybrid inviability gene” responsible for dead or infertile offspring when two species of fruit flies mate with each other.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!