Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

First South American Plant for Purifying Soils Contaminated with Zinc and Cadmium

Published: Wednesday, July 03, 2013
Last Updated: Wednesday, July 03, 2013
Bookmark and Share
Gomphrena claussenii easily grows on contaminated soil near zinc mines and takes up large amounts of heavy metals.

Scientists from Wageningen (NL) and Lavras (Brazil) have found the first South American plant that can be used for purifying South American soils contaminated with the heavy metals zinc and cadmium.

Native plants are strongly preferred over exotic plants for this purpose as they reduce the risk of introducing an invasive species that can turn into a pest.

The plant, Gomphrena claussenii, easily grows on contaminated soil near zinc mines and takes up large amounts of heavy metals in its leaves and stems. This makes it quite suitable for the purifying of South American soils.

There are soils all over the world polluted with heavy metals - often through human activity. Cadmium in particular is very harmful to humans and animals and can cause cancer in high concentrations.

By growing plants that take up a lot of heavy metals, the contaminated soil can be cleaned in an eco-friendly way known as ‘phytoremediation.’

An important condition is that the plants used are able to grow well in the relevant soil, and are not themselves poisoned by the heavy metals.

Plants that can withstand heavy metals are most easily found by studying what already grows on contaminated soils, where plant species that can resist the pollution will win out over more sensitive plants.

However, a plant that is capable of growing in contaminated soil is not automatically a plant that stores heavy metals.

The scientists, led by Mina T. Villafort Carvalho from Wageningen University, part of Wageningen UR (University & Research Centre), discovered many plants of the species Gomphrena claussenii near a zinc mine in the state of Minas Gerais in Brazil.

They examined the plants in the lab, comparing them to the closely related Gomphrena elegans. "Our first question was to check that the G. claussenii plants did not suffer from high concentrations of heavy metals," Carvalho remembers. "The claussenii plants were indeed found to grow well, while G. elegans plants wasted away completely at high concentrations of zinc and cadmium."

Out of the two species, the G. claussenii plants were also observed to be better at taking up heavy metals than G. elegans plants - up to thirty times better for zinc and twenty times better for cadmium.

The leaves of the plants ultimately contained almost 1% zinc and more than 0.1% cadmium. The G. claussenii plants store the heavy metals proportionately more in the leaves and stems, and less in the roots, than the G. elegans plants.

Carvalho: "This is important as only the leaves and stems can be harvested. In other words, when the G. claussenii plants are removed much more zinc and cadmium is removed with them."

If the concentrations of heavy metals in the Gomphrena claussenii plants are compared with those in other plants suitable for the purification of contaminated soils, for example in Europe, then Gomphrena claussenii is not necessarily the best.

However, the plant grows fast and creates much more biomass than any other plants that take up zinc or cadmium - and therefore absorbs the most metal from the ground per plant.

Scientists estimate that removal of about 5-15 kg of cadmium per hectare per year is entirely realistic. This would cause many contaminants to be brought below minimum safety levels within five years.

According to the scientists, it would therefore be worthwhile to conduct practical research into the purifying effect of Gomphrena claussenii in South America.

In addition, further research might provide insight into the mechanism by which the plant absorbs the heavy metals without poisoning itself.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Large-Scale Edible Insect Farming Needed to Ensure Global Food Security
Scientists tackle problems of feeding the ever-increasing global population and providing them with enough animal protein.
Friday, May 10, 2013
Breeding potatoes with improved properties
It is possible to breed potatoes in such a way that they produce new types of starch for use as a new and improved plant-based raw material in the construction, paper, glue, fodder and food industries.
Tuesday, November 30, 2010
Organic Chickens Express More Cholesterol Gene
Study reveals that organic chickens have higher expressed genes involved in the creation of cholesterol,
Friday, January 22, 2010
Scientific News
New Method Promises to Speed Development of Food Crops
A new study addresses a central challenge of transgenic plant development: how to reliably evaluate whether genetic material has been successfully introduced.
Where Cancer Cells May Begin
Scientists use fruit fly genetics to understand how things could go wrong in cancer.
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Bacteria Attack Lignin with Enzymatic Tag Team
Team from Rice, University of Wisconsin-Madison shows how nature handles lignin.
Milestone Resource in Wheat Research Now Available for Download
Leading on from The Genome Analysis Centre’s (TGAC) previous announcement of their new bread wheat genome assembly, the landmark resource is now publically available to download at the European Bioinformatics Institute’s (EMBL-EBI) Ensembl database for full analysis.
Nano-Reactor for the Production of Hydrogen Biofuel
Combining bacterial genes and virus shell creates a highly efficient, renewable material used in generating power from water.
Cleaning Wastewater with Pond Scum
A blob of algae scooped from a fountain on South Street almost two years ago, has seeded a crop of the green stuff that Drexel University researchers claim is more effective at treating wastewater than many of the processes employed in municipal facilities today.
Global Reductions in Mercury Emissions Should Lead to Billions in Economic Benefits for U.S.
Benefits from international regulations may double those of domestic policy.
A Worm with Five Faces
Max Planck scientists discover new roundworm species on Réunion.
A Gene for New Species is Identified
A University of Utah-led study identified a long-sought “hybrid inviability gene” responsible for dead or infertile offspring when two species of fruit flies mate with each other.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!