Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Black-Grass Resistance Gene Discovered

Published: Monday, July 08, 2013
Last Updated: Monday, July 08, 2013
Bookmark and Share
Findings offer prospect of better weed control.

BBSRC-funded scientists at the Universities of York and Durham have discovered a gene called AmGSTF1 that plays a key role in controlling multi-herbicide resistance (MHR) in black-grass and rye-grass. Chemicals that inhibit this gene can be used to make weed killers effective against resistant weeds.

Black-grass and rye-grass are both widespread and serious weed problems in cereal and oilseed rape rotations. Control using weed killers is becoming increasingly problematic, with an estimated 1.2 million ha of UK land now infested with black-grass. Both black-grass and rye-grass can acquire a single defence mechanism that confers resistance to all weed killers, whatever their mode of action (MHR).

The genetics of MHR has been little understood until now. But in recently published research, the scientists have shown that a gene producing an enzyme called glutathione transferase (GST) is responsible for switching on MHR. When the gene was transferred to thale cress, the transgenic plants became resistant. "GSTs are known to detoxify herbicides directly," explains project leader Professor Rob Edwards of the Centre for Novel Agricultural Products at the University of York, "but we believe that our gene works as a master switch that activates a wide range of protective mechanisms."

When sprayed with a GST- inhibiting chemical, resistant plants became susceptible to weed killers. Although the compound used in these experiments is not suitable for use as an agrochemical, this experiment demonstrates the potential of GST inhibitors to improve the effectiveness of weed killers against resistant black-grass and rye-grass.

Professor Edwards believes this to be an important development. "These weeds have developed resistance to every type of herbicide available to farmers and the problem is getting worse", he explains. "We have identified a group of compounds that could be applied along with existing weed-killers to restore the effective weed control we are currently losing". Professor Edwards' team are also developing a genetic test for AmGSTF1 that could provide the first reliable diagnosis of MHR, an important step in deciding on the right weed control strategy.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Controlling Leaf Blotch Disease In Wheat
Scientists have found a genetic mechanism that could stop the spread of a "devastating" disease threatening wheat crops.
Thursday, February 05, 2015
Rising Temperatures Predicted to Lower Wheat Yields
An international consortium of researchers has used big data sets to predict the effects climate change on global wheat yields.
Friday, December 26, 2014
UK And India Collaborate On Future-Proof Crops
Drought-tolerant tomatoes, improved wheat and grass pea could provide crops for the future.
Friday, November 28, 2014
Better Understanding of Disease Resistance Genes in Crops
Effector-triggered defence concept describes how plants protect themselves against the apoplast.
Friday, June 06, 2014
Public-private Research Partnership to Support Sustainable Agricultural Systems
The partnership will support projects that will help provide solutions to key challenges affecting the sustainability of the UK crop and livestock sectors.
Friday, May 23, 2014
A Synthetic Biology Approach to Improve Photosynthesis
Assembling a compartment inside chloroplasts of flowering plants has the potential to improve the efficiency of photosynthesis.
Friday, May 16, 2014
Green Vaccination: Boosting Plant Immunity Without Side Effects
A team of international researchers has uncovered a mechanism by which plants are able to better defend themselves against disease causing pathogens.
Tuesday, May 06, 2014
Rothamsted Research Granted Permission for new GM Field Trial
Permission granted by Defra for Rothamsted to carry out a field trial with GM Camelina plants that produce omega-3 fish oils in their seeds.
Monday, April 28, 2014
BBSRC, NSF Co-Fund International Arabidopsis Resource

Friday, March 14, 2014
Genetic traits in cattle identified that might allow farmers to breed livestock with increased resistance to bovine tuberculosis (TB)
The BBSRC-funded scientists compared the genetic code of TB-infected animals with that of disease-free cattle, could help to impact on a disease that leads to major economic losses worldwide.
Tuesday, February 18, 2014
UK Establishes Three New Synthetic Biology Research Centres
Bristol, Nottingham and a Cambridge/Norwich partnership will be UK centres for synthetic biology.
Friday, January 31, 2014
£17.7M for Major Long-Term Research Projects to Harness the Power of Bioscience
Research for agriculture, health, alternatives to fossil fuels, and new commercial products.
Monday, December 16, 2013
Crop-Infecting Virus Forces Aphids to Spread Disease
Viruses alter plant biochemistry in order to manipulate visiting aphids into spreading infection.
Friday, December 06, 2013
Octocopter to Monitor Crops
BBSRC has invested in unmanned aerial vehicle (UAV) technology to monitor crops and crop experiments as part of several genetic improvement projects.
Wednesday, December 04, 2013
Scientific News
New Organic Plant Breeding Effort to Produce Novel Varieties and Train New Breeders
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on the Origin of the Date Palm
Researchers also find ‘genetic mutation’ that is responsible for dates’ color.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos