Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Predicting how Insects, Plants Interact

Published: Tuesday, July 23, 2013
Last Updated: Tuesday, July 23, 2013
Bookmark and Share
Butterfly and moth larvae feeding on native plants will extend their diet to newly introduced non-native plants, but which ones?

Two UC Davis-affiliated ecologists have developed a novel method that predicts plant/herbivore interactions before the plants arrive.

The research, involving 900 butterfly and moth species and 459 non-native plants in Europe, may lead to better screening of potential invasive plants, risk assessment, and pest management strategies, said researchers Ian Pearse and Florian Altermatt.

"Despite the growing prevalence of non-native plants, there are few effective tools for predicting the fate of non-native plants or their impacts on native communities," they wrote in newly published research, "Predicting Novel Trophic Interactions in a Non-Native World," in Ecology Letters. "We demonstrated that novel interactions between herbivores and non-native plants can be predicted based on plant evolutionary relationships and properties in the native herbivore-plant food web."

"My work has asked why some non-native plants are attacked by native herbivores while others are not," said Pearse, who completed the research while studying for his doctorate degree in entomology at UC Davis. He teamed with Altermatt, then a UC Davis postdoctoral scholar with the UC Davis Department of Environmental Science and Policy. Pearse is now a postdoctoral researcher in the Cornell Lab of Ornithology, and Altermatt is with the Swiss Federal Institute of Aquatic Science and Technology in Zurich, Switzerland.

Altermatt, interested in long-term trends in moth populations, assembled what Pearse called "one of the most extensive food webs of moth-host plant interactions, which covers a large part of Germany."

"We noticed that many non-native plants were included as hosts of native moths in that food web," Pearse said, "and we thought that we could use some of the ideas that I had been working on to explain which moths have started to eat which non-native plants."

"Herbivores, by in large, are not very adventurous in what they eat," Pearse said. "So, when a non-native plant enters their habitat, they tend to colonize those that are similar to the ones that they already eat. Plant evolutionary relationships are one of the best ways of looking at similarity between plants."

They successfully predicted the majority of novel interactions between herbivores and non-native plants. "When non-native plants enter a new ecosystem, their success and effects are mostly unpredictable," Pearse said. "However, we showed that one very predictable aspect of a non-native plant is which native herbivores can colonize it."

For instance, the larvae of the cinnabar moth (family Tyriajacobaeae), are a biocontrol agent of ragworts (Senecio), a native of Europe, but they also will colonize other plants. A geometrid moth, Eupithecia virganreata feeds on various ragworts but over the last decades, has extended its diet to invasive goldenrods (Solidago canadensis and S. gigantea).

On the basis of interactions between native hosts and insects, the researchers found "specific diet extensions of potential European pest insects to plants of forestry or agricultural interest introduced from North America, as well as the diet extension of European insects onto non-native plants that are of invasive concern."

"The goal of this approach is to correctly identify specific important interactions between a novel plant and native herbivore with the lowest possible false-positive rate, where a null model would result in a 50 percent false-positive rate," they wrote. "For example, we predicted that the tussock moth (Calliteara pudibunda) colonizes red oak (Quercus rubra; a common introduced tree throughout Europe) with a false-positive rate of only 0.7 percent. The tussock moth is an herbivorous insect of forestry concerns, having mass-outbreaks, and it is thus critical to understand its diet extension to novel host plants. Similarly, we predicted that the specialist Sessiid moth Synanthedon tipuliformis colonizes Ribes aureum, a cultivated gooseberry introduced from North America, with a false-positive rate of only 2.0 percent. S. tipuliformis is known to cause damage in agricultural gooseberry plantations, and an accurate prediction of host switch to introduced agricultural gooseberries is thus economically important."

Pearse received his doctorate in entomology from UC Davis in 2011, studying with major professor Rick Karban. Pearse's current research at Cornell "is trying to understand masting in oak trees; that is, why and how trees produce very large seed sets in some years but small ones in others."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Sustaining Our Salad
Improving lettuce crops is the aim of a new, $4.5 million grant, awarded to University of California, Davis, researchers by the U.S. Department of Agriculture's National Institute of Food and Agriculture.
Thursday, October 15, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
International Fruit Pest Targeted by Genomic Research
The spotted wing drosophila is itself being targeted, thanks to groundbreaking genome sequencing.
Friday, December 06, 2013
DNA Sequencing Lifts Veil on Wine’s Microbial Terroir
It’s widely accepted that terroir — the unique blend of a vineyard’s soils, water and climate — sculpts the flavor and quality of wine.
Wednesday, November 27, 2013
Grapevine Virus Screening Saves Napa-Sonoma $60M
Providing disease-free grapevines and rootstock to California’s famed North Coast wine region is money-wise to the tune of more than $60 million annually.
Tuesday, November 19, 2013
New Cattle Virus Identified by Genome Sequencing
A new cow virus that causes neurologic symptoms reminiscent of mad cow disease has been identified and its genome sequenced by a team of researchers.
Thursday, August 15, 2013
More Accurate Model of Climate Change’s Effect on Soil
Scientists have developed a new computer model to measure global warming's effect in soil worldwide that accounts for how bacteria and fungi in soil control carbon.
Friday, August 02, 2013
Gene Discovery May Halt Disease that Threatens Wheat
Researchers have identified a gene that enables resistance to a new race, or strain, of stem rust, a disease threatening global food security.
Monday, July 01, 2013
Reforms Could Boost Use of Land Conservation Banks
California legislators have enacted the state's first conservation banking law, based on a pioneering program launched 18 years ago.
Tuesday, June 11, 2013
Genome of Lotus May Hold Anti-Aging Secrets
The "sacred lotus" is believed to have a powerful genetic system that repairs genetic defects.
Monday, May 13, 2013
Scientists Find Compounds that Boost Oil Output of Algae
Chemists have found several compounds that can boost oil production by green microscopic algae, a potential source of biodiesel and other "green" fuels.
Tuesday, April 09, 2013
Conference Sets Agenda for Climate-smart Ag Research
An action-oriented scientific agenda for tackling global climate change and its impacts on agriculture emerged from the international, three-day Climate-Smart Agriculture Conference.
Tuesday, March 26, 2013
Study Reveals Genetic Diversity of Genes in Peppers
Researchers have developed a “family tree” of sorts for peppers and characterized the diversity of genes found in a collection of common cultivated pepper varieties.
Monday, February 18, 2013
Farmers and Environment Profit from New Website
University of California Cooperative Extension is rolling out a new website for farmers that will help them save money and protect the environment.
Friday, February 01, 2013
Scientific News
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on the Origin of the Date Palm
Researchers also find ‘genetic mutation’ that is responsible for dates’ color.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Speeding Up Potato Breeding
A joint project is investigating the potential of drones for speeding up the development of new potato varieties.
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Ancestors of Land Plants Were Wired to Make the Leap to Shore
When the algal ancestor of modern land plants made the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos