Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

“Bacterial raincoat” Found to Protect Bacteria from the Environment

Published: Monday, July 29, 2013
Last Updated: Monday, July 29, 2013
Bookmark and Share
Research led by scientists at the University of Dundee has uncovered the workings of a “bacterial raincoat” that helps to protect bacteria from the changing environment in which they live.

Many bacteria grow in large communities called biofilms, where the cells work together and produce a sticky matrix that holds the cells together and provides protection from environmental threats. The team have shown how a bacterium called Bacillus, commonly found in soil, protects itself by forming a water repellent coat. They found that the process is due to a protein produced by the bacterium called BslA. This protein spontaneously assembles to form a water repellent coat, protecting the Bacillus cells underneath. 

As Bacillus subtilis is currently being examined to assess its suitability for use as a widespread bio-fertilizer, the discovery has the potential to aid the development of an ecologically sound method of protecting crops.

The findings of the team, led by Dr Nicola Stanley-Wall and Professor Daan van Aalten from the College of Life Sciences at Dundee, alongside their colleague Professor Cait MacPhee, from the University of Edinburgh, are published today in the journal Proceedings of the National Academy of Sciences.

“We have determined the structure of the BslA protein, and used the information gained from it to identify the important parts of the protein that are responsible for making the biofilm coat water repellent,” explained Dr Stanley-Wall.

“What we have shown is that this protein is very unusual in its ability to repel water from the environment whilst keeping the bacteria inside the biofilm in optimal conditions. The more we understand how the raincoat assembles the more we can work to encourage this process and increase the effectiveness of Bacillus subtilis as an environmentally friendly alternative to chemical fertilizers.”

Bacteria are small, single-celled organisms, which play a variety of roles in nature. Although some types are linked to infection and disease, others are entirely benign and indeed are beneficial, such as those that live side-by side with plants and protect them from disease or those in the gut that are essential for the maintenance of human health.

Although the research centred upon the workings of a single bacterium, it may potentially help scientists to better understand how biofilms formed in the human body become resistant to antibiotics, according to Dr Stanley-Wall.

She continued, “There are possible implications for many different plants and even for human health as the principles guiding the research are the same. If we know how bacteria assemble into a bacterium assembles biofilm then we know how to disrupt it in the case of harmful, or to encourage the growth of good bacteria."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Breakthrough in Plant Salt-Tolerance Research
Researchers have made a breakthrough in plant salt tolerance that could lead to new salt tollerant crop types.
Microbes Help Plants Survive In Severe Drought
Researchers discover plants survive better under drought conditions with help from natural microbes.
Mosquito Genetics Determine Tastes
Study reveals mosuito's preference for human versus animal biting is determined by genetics.
Mouse Genes Guiding Precision Medicine
Research of the mouse genome has identified hundreds of essential-to-life genes from the 1751 genes studied.
Environmental Impact of GM Crops
Following the adoption of GM crops, insecticide usage decreases but herbicide use increases, study shows.
Genes Essential to Life Discovered
Genes critical for life are discovered in humans and mice as part of large-scale phenotyping study.
Protein That Initiates DNA Repair Found
Researchers have identified a protein that may initiate a cascade of molecular activity to repair DNA damage.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!